login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055112
a(n) = n*(n+1)*(2*n+1).
16
0, 6, 30, 84, 180, 330, 546, 840, 1224, 1710, 2310, 3036, 3900, 4914, 6090, 7440, 8976, 10710, 12654, 14820, 17220, 19866, 22770, 25944, 29400, 33150, 37206, 41580, 46284, 51330, 56730, 62496, 68640, 75174, 82110, 89460, 97236, 105450
OFFSET
0,2
COMMENTS
Original name: Areas of Pythagorean triangles (X, Y, Z = Y + 1) with X^2 + Y^2 = Z^2.
a(n) is the set of possible y values for 4*x^3 + x^2 = y^2 with the x values being A002378(n). - Gary Detlefs, Feb 22 2010
This sequence is related to A028896 by a(n) = n*A028896(n) - Sum_{i = 0..n-1} A028896(i) and this is the case d = 3 in the identity n*(d*(d+1)*n*(n+1)/4) - Sum_{i = 0..n-1} d*(d+1)*i*(i+1)/4 = d*(d+1)*n*(n+1)*(2*n+1)/12. - Bruno Berselli, Mar 31 2012
Also sums of rows of natural numbers (cf. A001477) seen as triangle with an odd numbers of terms per row, see example. - Reinhard Zumkeller, Jan 24 2013
Without mentioning the connection to Pythagorean triangles, Bolker (1967) gives it as an exercise to prove that these numbers are always divisible by 6. This is easy to prove from the formula that he gives, n(n - 1)(2n - 1): obviously either n or (n - 1) must be even; then, if n is congruent to 2 mod 3 it means that (2n - 1) is a multiple of 3, otherwise either n or (n - 1) is a multiple of 3; thus both prime divisors of 6 are accounted for in a(n). - Alonso del Arte, Oct 13 2013
a(n) = n*(n+1)*(n+(n+1)) is the product of two consecutive integers multiplied by the sum of those two consecutive integers. - Charles Kusniec, Sep 04 2022
REFERENCES
Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.5.
FORMULA
a(n) = n*(n+1)*(2*n+1).
G.f.: 6*x*(1+x)/(1-x)^4. - Bruno Berselli, Mar 31 2012
From Benoit Cloitre, Apr 30 2002: (Start)
a(n) = 6*A000330(n) = A007531(2*n)/4 = 3*A000292(2*n-1)/2 = A005408(n)*A046092(n)/2 = A005408(n)*(A001844(n)-1)/2.
Sum_{n > 0} 1/a(n) = 3 - 4*log(2). (End)
a(n) = Sum_{i = 1..n} A033581(i). - Jonathan Vos Post, Mar 15 2006
a(n) = A000217(2*n)*A000217(2*n+1)/(2*n+1). - Charlie Marion, Feb 17 2012
a(n) = Sum_{i = 1..2*n + 1} (n^2 + (i-1)). - Charlie Marion, Sep 14 2012
Sum_{n >= 1} (-1)^(n+1)/a(n) = Pi - 3, due to Nilakantha, circa 1500. See Roy p. 304. - Peter Bala, Feb 19 2015
a(n) = A002378(n) * (2n+1). - Bruce J. Nicholson, Aug 31 2017
EXAMPLE
. n A001477(n) as triangle with row lengths = 2*n+1 Row sums = a(n)
. 0 0 0
. 1 1 2 3 6
. 2 4 5 6 7 8 30
. 3 9 10 11 12 13 14 15 84
. 4 16 17 18 19 20 21 22 23 24 180
. 5 25 26 27 28 29 30 31 32 33 34 35 330
. 6 36 37 38 39 40 41 42 43 44 45 46 47 48 546
. 7 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 840 .
- Reinhard Zumkeller, Jan 24 2013
MATHEMATICA
Table[n(n + 1)(2n + 1), {n, 0, 39}] (* Vladimir Joseph Stephan Orlovsky, Nov 21 2010 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 6, 30, 84}, 50] (* Harvey P. Dale, Oct 02 2024 *)
PROG
(PARI) a(n)=n*(n+1)*(2*n+1);
(Python)
def A055112(n): return n*(n*((n<<1) + 3) + 1) # Chai Wah Wu, Nov 14 2022
CROSSREFS
Cf. A005408 (X values), A046092 (Y values), A001844 (Z values), A002939 (perimeter), A033581.
Similar sequences are listed in A316224.
Sequence in context: A259918 A002444 A152788 * A094143 A217260 A009775
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 15 2000
STATUS
approved