login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316224
a(n) = n*(2*n + 1)*(4*n + 1).
3
0, 15, 90, 273, 612, 1155, 1950, 3045, 4488, 6327, 8610, 11385, 14700, 18603, 23142, 28365, 34320, 41055, 48618, 57057, 66420, 76755, 88110, 100533, 114072, 128775, 144690, 161865, 180348, 200187, 221430, 244125, 268320, 294063, 321402, 350385, 381060, 413475, 447678, 483717
OFFSET
0,2
COMMENTS
Sums of the consecutive integers from A000384(n) to A000384(n+1)-1. This is the case s=6 of the formula n*(n*(s-2) + 1)*(n*(s-2) + 2)/2 related to s-gonal numbers.
The inverse binomial transform is 0, 15, 60, 48, 0, ... (0 continued).
FORMULA
O.g.f.: 3*x*(5 + 10*x + x^2)/(1 - x)^4.
E.g.f.: x*(15 + 30*x + 8*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 3*A258582(n).
a(n) = -3*A100157(-n).
Sum_{n>0} 1/a(n) = 2*(3 - log(4)) - Pi.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2) + 2*sqrt(2)*log(1+sqrt(2)) + (sqrt(2)-1/2)*Pi - 6. - Amiram Eldar, Sep 17 2022
EXAMPLE
Row sums of the triangle:
| 0 | ................................................................. 0
| 1 | 2 3 4 5 .................................................... 15
| 6 | 7 8 9 10 11 12 13 14 ........................................ 90
| 15 | 16 17 18 19 20 21 22 23 24 25 26 27 ........................... 273
| 28 | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 ............... 612
| 45 | 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 .. 1155
...
where:
. first column is A000384,
. second column is A130883 (without 1),
. third column is A033816,
. diagonal is A014106,
. 0, 2, 8, 18, 32, 50, ... are in A001105.
MAPLE
seq(n*(2*n+1)*(4*n+1), n=0..40); # Muniru A Asiru, Jun 27 2018
MATHEMATICA
Table[n (2 n + 1) (4 n + 1), {n, 0, 40}]
PROG
(PARI) vector(40, n, n--; n*(2*n+1)*(4*n+1))
(Sage) [n*(2*n+1)*(4*n+1) for n in (0..40)]
(Maxima) makelist(n*(2*n+1)*(4*n+1), n, 0, 40);
(GAP) List([0..40], n -> n*(2*n+1)*(4*n+1));
(Magma) [n*(2*n+1)*(4*n+1): n in [0..40]];
(Python) [n*(2*n+1)*(4*n+1) for n in range(40)]
(Julia) [n*(2*n+1)*(4*n+1) for n in 0:40] |> println
CROSSREFS
First bisection of A059270 and subsequence of A034828, A047866, A109900, A290168.
Sums of the consecutive integers from P(s,n) to P(s,n+1)-1, where P(s,k) is the k-th s-gonal number: A027480 (s=3), A055112 (s=4), A228888 (s=5).
Sequence in context: A164541 A145789 A010822 * A022707 A323334 A151974
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 27 2018
STATUS
approved