OFFSET
1,4
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: (3-2*zeta(s))/(4-3*zeta(s)).
a(p^k) = 4^(k-1).
Sum_{k=1..n} a(k) ~ -n^r / (9*r*Zeta'(r)), where r = 2.52138975790328306967497455387140053675965539610041801606891036... is the root of the equation Zeta(r) = 4/3. - Vaclav Kotesovec, Feb 02 2019
EXAMPLE
For n=6 we have ((6)) = ((3*2)) = ((2*3)) = ((3)*(2)) = ((2)*(3)) = ((3))*((2)) = ((2))*((3)), thus a(6) = 7.
PROG
(PARI)
A050356aux(n) = if(1==n, 1/3, 3*sumdiv(n, d, if(d<n, A050356aux(d), 0)));
A050356(n) = if(1==n, n, A050356aux(n)); \\ Antti Karttunen, May 19 2017, after the general recurrence given by Vladeta Jovovic May 25 2005 in A050354.
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved