login
A050358
Number of ordered factorizations of n with 3 levels of parentheses.
4
1, 1, 1, 5, 1, 9, 1, 25, 5, 9, 1, 65, 1, 9, 9, 125, 1, 65, 1, 65, 9, 9, 1, 425, 5, 9, 25, 65, 1, 121, 1, 625, 9, 9, 9, 605, 1, 9, 9, 425, 1, 121, 1, 65, 65, 9, 1, 2625, 5, 65, 9, 65, 1, 425, 9, 425, 9, 9, 1, 1145, 1, 9, 65, 3125, 9, 121, 1, 65, 9, 121, 1, 4825, 1, 9, 65, 65, 9, 121
OFFSET
1,4
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - R. J. Mathar, Jul 15 2010
LINKS
FORMULA
Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)).
a(n) = A050359(A101296(n)). - R. J. Mathar, May 26 2017
Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - Vaclav Kotesovec, Feb 02 2019
EXAMPLE
6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))).
CROSSREFS
Cf. A002033, A050351-A050359. a(p^k)=5^(k-1). a(A002110)=A050353.
Sequence in context: A147085 A348980 A046580 * A147319 A147326 A336048
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved