OFFSET
1,4
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - R. J. Mathar, Jul 15 2010
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..899
FORMULA
Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)).
Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - Vaclav Kotesovec, Feb 02 2019
EXAMPLE
6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))).
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved