login
A048967
Number of even entries in row n of Pascal's triangle (A007318).
20
0, 0, 1, 0, 3, 2, 3, 0, 7, 6, 7, 4, 9, 6, 7, 0, 15, 14, 15, 12, 17, 14, 15, 8, 21, 18, 19, 12, 21, 14, 15, 0, 31, 30, 31, 28, 33, 30, 31, 24, 37, 34, 35, 28, 37, 30, 31, 16, 45, 42, 43, 36, 45, 38, 39, 24, 49, 42, 43, 28, 45, 30, 31, 0, 63, 62, 63, 60, 65, 62, 63, 56, 69, 66, 67
OFFSET
0,5
COMMENTS
In rows 2^k - 1 all entries are odd.
a(n) = 0 (all the entries in the row are odd) iff n = 2^m - 1 for some m >= 0 and then n belongs to sequence A000225. - Avi Peretz (njk(AT)netvision.net.il), Apr 21 2001
Also number of zeros in n-th row of Sierpiński's triangle (cf. A047999): a(n) = A023416(A001317(n)). - Reinhard Zumkeller, Nov 24 2012
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
FORMULA
a(n) = n+1 - A001316(n) = n+1 - 2^A000120(n) = n+1 - Sum_{k=0..n} (C(n, k) mod 2) = Sum_{k=0..n} ((1 - C(n, k)) mod 2).
a(2n) = a(n) + n, a(2n+1) = 2a(n). - Ralf Stephan, Oct 07 2003
a(n) = row sums in A219463 = A000120(A219843(n)). - Reinhard Zumkeller, Nov 30 2012
A249304(n+1) = a(n+1) + a(n). - Reinhard Zumkeller, Nov 14 2014
G.f.: 1/(1 - x)^2 - Product_{k>=0} (1 + 2*x^(2^k)). - Ilya Gutkovskiy, Jul 19 2019
EXAMPLE
Row 4 is 1 4 6 4 1 with 3 even entries so a(4)=3.
MATHEMATICA
Table[n + 1 - Sum[ Mod[ Binomial[n, k], 2], {k, 0, n} ], {n, 0, 100} ]
a[n_] := n + 1 - 2^DigitCount[n, 2, 1]; Array[a, 100, 0] (* Amiram Eldar, Jul 27 2023 *)
PROG
(PARI) a(n)=if(n<1, 0, if(n%2==0, a(n/2)+n/2, 2*a((n-1)/2)))
(Haskell)
import Data.List (transpose)
a048967 n = a048967_list !! n
a048967_list = 0 : xs where
xs = 0 : concat (transpose [zipWith (+) [1..] xs, map (* 2) xs])
-- Reinhard Zumkeller, Nov 14 2014, Nov 24 2012
(Python)
def A048967(n): return n+1-(1<<n.bit_count()) # Chai Wah Wu, May 03 2023
CROSSREFS
KEYWORD
easy,nonn
STATUS
approved