OFFSET
1,2
COMMENTS
A generalization of the Catalan triangle A033184.
LINKS
Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
a(n, m) = 3*(3*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n<m; a(n, 0) := 0; a(1, 1)=1.
G.f. for m-th column: ((1-(1-9*x)^(1/3))/3)^m.
a(n,m) = m/n * sum(k=0..n-m, binomial(k,n-m-k) * 3^k*(-1)^(n-m-k) * binomial(n+k-1,n-1)). - Vladimir Kruchinin, Feb 08 2011
EXAMPLE
Triangle begins:
1;
3, 1;
15, 6, 1;
90, 39, 9, 1;
594, 270, 72, 12, 1;
4158, 1953, 567, 114, 15, 1;
MATHEMATICA
a[n_, m_] /; n >= m >= 1 := a[n, m] = 3*(3*(n-1) - m)*a[n-1, m]/n + m*a[n-1, m-1]/n; a[n_, m_] /; n < m := 0; a[n_, 0] = 0; a[1, 1] = 1; Table[a[n, m], {n, 1, 10}, {m, 1, n}] // Flatten (* Jean-François Alcover, Apr 26 2011, after given formula *)
PROG
(Haskell)
a048966 n k = a048966_tabl !! (n-1) !! (k-1)
a048966_row n = a048966_tabl !! (n-1)
a048966_tabl = [1] : f 2 [1] where
f x xs = ys : f (x + 1) ys where
ys = map (flip div x) $ zipWith (+)
(map (* 3) $ zipWith (*) (map (3 * (x - 1) -) [1..]) (xs ++ [0]))
(zipWith (*) [1..] ([0] ++ xs))
-- Reinhard Zumkeller, Feb 19 2014
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved