login
A025748
3rd-order Patalan numbers (generalization of Catalan numbers).
15
1, 1, 3, 15, 90, 594, 4158, 30294, 227205, 1741905, 13586859, 107459703, 859677624, 6943550040, 56540336040, 463630755528, 3824953733106, 31724616256938, 264371802141150, 2212374554760150, 18583946259985260, 156636118477018620, 1324287183487521060
OFFSET
0,3
COMMENTS
G.f. (with a(0)=0) is series reversion of x - 3*x^2 + 3*x^3.
The Hankel transform of a(n) is A005130(n) * 3^binomial(n,2).
LINKS
I. M. Gessel and G. Xin, The generating function of ternary trees and continued fractions, arXiv:math/0505217 [math.CO], 2005, eq. (5.1).
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
Elżbieta Liszewska and Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Thomas M. Richardson, The Super Patalan Numbers, J. Int. Seq. 18 (2015), Article 15.3.3; arXiv preprint, arXiv:1410.5880 [math.CO], 2014.
FORMULA
From Wolfdieter Lang: (Start)
G.f.: (4 - (1-9*x)^(1/3))/3.
a(n) = 3^(n-1) * 2 * A034000(n-1)/n!, n >= 2.
a(n) = 3 * A034164(n-2), n >= 2. (End)
D-finite with recurrence n*a(n) +3*(4-3*n)*a(n-1) = 0, n >= 2. - R. J. Mathar, Oct 29 2012
For n>0, a(n) = 9^(n-1) * Gamma(n-1/3) / (n * Gamma(2/3) * Gamma(n)). - Vaclav Kotesovec, Feb 09 2014
For n > 0, a(n) = 3^(2*n-1)*(-1)^(n+1)*binomial(1/3, n). - Peter Bala, Mar 01 2022
Sum_{n>=0} 1/a(n) = 37/16 + 3*sqrt(3)*Pi/64 - 9*log(3)/64. - Amiram Eldar, Dec 02 2022
For n >= 1, a(n) = Integral_{x = 0..9} x^n * w(x) dx, where w(x) = 1/(2*sqrt(3)*Pi) * x^(2/3)*(9 - x)^(1/3)/x^2. - Peter Bala, Oct 14 2024
MAPLE
A025748 :=proc(n)
local x;
coeftayl(4-(1-9*x)^(1/3), x=0, n) ;
%/3 ;
end proc: # R. J. Mathar, Nov 01 2012
MATHEMATICA
CoefficientList[Series[(4-Power[1-9x, (3)^-1])/3, {x, 0, 25}], x] (* Harvey P. Dale, Nov 14 2011 *)
Flatten[{1, Table[FullSimplify[9^(n-1) * Gamma[n-1/3] / (n * Gamma[2/3] * Gamma[n])], {n, 1, 25}]}] (* Vaclav Kotesovec, Feb 09 2014 *)
PROG
(PARI) a(n)=if(n<1, n==0, polcoeff(serreverse(x-3*x^2+3*x^3+x*O(x^n)), n))
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( (4 - (1-9*x)^(1/3))/3 )); // G. C. Greubel, Sep 17 2019
(Sage)
def A025748_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P((4 - (1-9*x)^(1/3))/3).list()
A025748_list(25) # G. C. Greubel, Sep 17 2019
CROSSREFS
Apart from the initial 1, identical to A097188.
Sequence in context: A370186 A361843 A097188 * A366085 A271930 A201953
KEYWORD
nonn,easy
STATUS
approved