login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 - x + 2*x^2 + 2*x^3 - x^4 - x^5)/(1-x)^3.
3

%I #24 Mar 07 2020 01:15:57

%S 1,2,5,12,22,34,48,64,82,102,124,148,174,202,232,264,298,334,372,412,

%T 454,498,544,592,642,694,748,804,862,922,984,1048,1114,1182,1252,1324,

%U 1398,1474,1552,1632,1714,1798,1884,1972,2062,2154,2248,2344,2442,2542

%N Expansion of (1 - x + 2*x^2 + 2*x^3 - x^4 - x^5)/(1-x)^3.

%C Also, number of permutations of length n+1 which avoid the patterns 321, 1342, 2134. - _Lara Pudwell_, Feb 26 2006

%H Colin Barker, <a href="/A048840/b048840.txt">Table of n, a(n) for n = 0..1000</a>

%H Lara Pudwell, <a href="http://faculty.valpo.edu/lpudwell/maple/webbook/bookmain.html">Systematic Studies in Pattern Avoidance</a>, 2005.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F For n > 2, a(n) = n^2 + 3n - 6.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5. - _Colin Barker_, May 03 2019

%t CoefficientList[Series[(1-x+2*x^2+2*x^3-x^4-x^5)/(1-x)^3,{x,0,60}],x] (* or *) Join[{1,2,5},Table[n^2+3*n-6,{n,3,60}]] (* or *) Join[{1,2,5},LinearRecurrence[{3,-3,1},{12,22,34},58]] (* _Vladimir Joseph Stephan Orlovsky_, Jan 31 2012 *)

%o (PARI) Vec((1-x+2*x^2+2*x^3-x^4-x^5)/(1-x)^3 + O(x^99)) \\ _Charles R Greathouse IV_, Sep 27 2012, corrected by _Colin Barker_, May 03 2019

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_