login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047456
Numbers that are congruent to {0, 2, 3, 4} mod 8.
2
0, 2, 3, 4, 8, 10, 11, 12, 16, 18, 19, 20, 24, 26, 27, 28, 32, 34, 35, 36, 40, 42, 43, 44, 48, 50, 51, 52, 56, 58, 59, 60, 64, 66, 67, 68, 72, 74, 75, 76, 80, 82, 83, 84, 88, 90, 91, 92, 96, 98, 99, 100, 104, 106, 107, 108, 112, 114, 115, 116, 120, 122, 123
OFFSET
1,2
FORMULA
G.f.: x^2*(2+x+x^2+4*x^3)/((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, May 13 2012
a(n) = (-11-(-1)^n-(2-i)*(-i)^n-(2+i)*i^n+8*n)/4 where i=sqrt(-1). - Colin Barker, May 14 2012
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. - Vincenzo Librandi, May 16 2012
a(2k) = A047463(k), a(2k-1) = A047470(k). - Wesley Ivan Hurt, May 31 2016
E.g.f.: (8 + sin(x) - 2*cos(x) + (4*x - 5)*sinh(x) + (4*x - 6)*cosh(x))/2. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=2} (-1)^n/a(n) = (2-sqrt(2))*Pi/16 + log(2)/8 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 21 2021
MAPLE
A047456:=n->(-11-(-1)^n-(2-I)*(-I)^n-(2+I)*I^n+8*n)/4: seq(A047456(n), n=1..100); # Wesley Ivan Hurt, May 31 2016
MATHEMATICA
Select[Range[0, 300], MemberQ[{0, 2, 3, 4}, Mod[#, 8]]&] (* Vincenzo Librandi, May 16 2012 *)
PROG
(Magma) I:=[0, 2, 3, 4, 8]; [n le 5 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, May 16 2012
CROSSREFS
Sequence in context: A082224 A030478 A118252 * A279000 A073465 A174816
KEYWORD
nonn,easy
STATUS
approved