login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047457
Numbers that are congruent to {3, 4} mod 8.
4
3, 4, 11, 12, 19, 20, 27, 28, 35, 36, 43, 44, 51, 52, 59, 60, 67, 68, 75, 76, 83, 84, 91, 92, 99, 100, 107, 108, 115, 116, 123, 124, 131, 132, 139, 140, 147, 148, 155, 156, 163, 164, 171, 172, 179, 180, 187, 188, 195, 196, 203, 204, 211, 212, 219, 220, 227
OFFSET
1,1
COMMENTS
Union of A017101 and A017113. - Michel Marcus, Feb 25 2014
Numbers whose binary reflected Gray code (A014550) has a single trailing zero. - Amiram Eldar, May 17 2021
FORMULA
a(n) = 8*n - a(n-1) - 9 (with a(1) = 3). - Vincenzo Librandi, Aug 06 2010
G.f.: x*(3+x+4*x^2)/((1-x)^2*(1+x)). - Colin Barker, May 13 2012
a(n) = (-5 - 3*(-1)^n + 8*n)/2. - Colin Barker, May 14 2012
A000120(a(n)-1) = A000120(a(n)+1) = A063787(n). - Ilya Lopatin and Juri-Stepan Gerasimov, Feb 25 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/4 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 18 2021
MAPLE
A047457:=n->(-5 - 3*(-1)^n + 8*n)/2; seq(A047457(n), n=1..100); # Wesley Ivan Hurt, Mar 04 2014
MATHEMATICA
Table[(-5 - 3*(-1)^n + 8*n)/2, {n, 100}] (* Wesley Ivan Hurt, Mar 04 2014 *)
Flatten[Table[8n + {3, 4}, {n, 0, 29}]] (* Alonso del Arte, Mar 04 2014 *)
CROSSREFS
Sequence in context: A244005 A228236 A344346 * A226632 A098377 A075646
KEYWORD
nonn,easy
STATUS
approved