login
A045765
n - d(n) never takes these values, where d(n) = A000005(n).
27
7, 8, 13, 19, 20, 24, 25, 28, 33, 36, 37, 40, 43, 49, 50, 52, 55, 56, 63, 64, 66, 67, 68, 74, 75, 79, 85, 88, 98, 100, 103, 108, 109, 112, 113, 116, 117, 123, 124, 126, 131, 132, 133, 134, 136, 140, 143, 145, 150, 153, 156, 159, 160, 163, 164, 167, 168
OFFSET
1,1
COMMENTS
Complement of A236562. - Jaroslav Krizek, Feb 09 2014
Positions of zeros in A060990, leaf-nodes in the tree generated by edge-relation A049820(child) = parent. - Antti Karttunen, Oct 06 2015
Since A000005(x) <= 1 + x/2, n is in the sequence if there are no x <= 2*(n+1) with n = x - d(x). - Robert Israel, Oct 12 2015
This can be improved as: n is in the sequence if there are no x <= n + A002183(2+A261100(n)) with n = x - d(x). Cf. also A070319, A262686. - Antti Karttunen, Oct 12 2015
LINKS
MAPLE
N:= 1000: # to get all terms <= N
sort(convert({$1..N} minus {seq(x - numtheory:-tau(x), x=1..2*(1+N))}, list)); # Robert Israel, Oct 12 2015
MATHEMATICA
lim = 10000; Take[Complement[Range@ lim, Sort@ DeleteDuplicates@ Table[n - DivisorSigma[0, n], {n, lim}]], 57] (* Michael De Vlieger, Oct 13 2015 *)
PROG
(PARI)
allocatemem((2^31)+(2^30));
uplim = 36756720 + 640; \\ = A002182(53) + A002183(53).
v060990 = vector(uplim);
for(n=3, uplim, v060990[n-numdiv(n)]++);
A060990 = n -> if(!n, 2, v060990[n]);
uplim2 = 36756720;
n=0; k=1; while(n <= uplim2, if(0==A060990(n), write("b045765_big.txt", k, " ", n); k++); n++; );
\\ Antti Karttunen, Oct 09 2015
(Scheme)
(define A045765 (ZERO-POS 1 1 A060990))
;; Using also IntSeq-library of Antti Karttunen, Oct 06 2015
CROSSREFS
Top row of A262898.
Cf. A263091 (primes in this sequence), A263095 (squares).
Cf. A259934 (gives the infinite trunk of the same tree, conjectured to be unique).
Sequence in context: A025156 A228210 A377332 * A118068 A060754 A196129
KEYWORD
nonn
STATUS
approved