login
A262909
a(n) = greatest k such that A155043(k+A262509(n)) < A155043(A262509(n)).
4
5197, 5193, 5177, 5115, 5113, 4419, 4417, 4259, 4245, 4243, 4239, 4059, 4047, 3991, 3941, 3633, 3593, 3449, 3445, 3437, 3423, 3421, 2897, 2789, 2517, 2261, 2079, 2077, 2067, 2063, 1527, 1379, 1135, 1127, 1117, 1103, 1083, 575, 23457, 23451, 21689, 21671, 20241, 19003, 18977, 18649, 18063, 18019, 14853, 14159, 13659, 12707, 11681, 10993, 10991, 10297, 10281, 9151, 9149, 9145, 9111, 8897, 8535, 8147, 6835, 6813, 5539, 5537
OFFSET
1,1
COMMENTS
a(n) = largest k such that A155043(k+A262509(n)) < A262508(n).
There might occur also negative terms, but no zeros.
For all terms a(n) > 0, a(n)+A262509(n) = A263081(n) is by necessity one of the leaves (A045765) in the tree generated by edge-relation A049820(child) = parent. See also comments in A262908.
FORMULA
a(n) = A263078(A262509(n)).
a(n) = A263081(n) - A262509(n).
Other identities. For all n >= 1:
a(n) >= A262908(n).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2015
STATUS
approved