login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027858
Triangle of "Harmonic Coefficients" T(n,k), read by rows: (Sum_{i=1..n} T(n,i) * k^i) * k! / ((n+k)! * n!) = (Sum_{i=1..k} (1/i-1/(i+n)) = n * (Sum_{i=1..k} 1/(i*(i+n)))).
0
1, 5, 3, 49, 48, 11, 820, 1030, 404, 50, 21076, 31050, 16090, 3510, 274, 773136, 1277136, 792540, 233100, 32724, 1764, 38402064, 69261696, 48943692, 17498880, 3361176, 330624, 13068, 2483133696, 4805827776, 3752675136, 1545593616, 364984704, 49672224, 3622464, 109584
OFFSET
0,2
FORMULA
T(n, m) = n! * Sum_{k=1..m} ((-1)^(k+1) * S(n+1, m+1-k) * Sum_{i=1..n} i^(-k-1)), where S(n, m) are the unsigned Stirling numbers of the first kind.
T(n, m) = n! * (S(n+1, m+1) * Sum_{k=1..n} (1/k) - S(n+1, m+2)*(m+1)).
EXAMPLE
Triangle begins:
1;
5, 3;
49, 48, 11;
820, 1030, 404, 50;
...
CROSSREFS
Sequence in context: A288184 A323779 A343290 * A181755 A007299 A257935
KEYWORD
nonn,tabl,easy
AUTHOR
EXTENSIONS
Revised and more terms from Sean A. Irvine, Dec 07 2019
STATUS
approved