login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257935
Numerators of the inverse binomial transform of the Bernoulli numbers with B(1)=1.
1
1, 0, -5, 3, -61, 5, -125, 7, -121, 9, -325, 11, -17071, 13, -35, 15, -7697, 17, 36685, 19, -177911, 21, 852995, 23, -236396851, 25, 8553025, 27, -23749473209, 29, 8615841061175, 31, -7709321049377, 33, 2577687858265, 35, -26315271553088022793, 37
OFFSET
0,3
COMMENTS
Difference table of 1, 1, 1/6, 0, -1/30, ... :
1, 1, 1/6, 0, -1/30, 0, 1/42, 0, ...
0, -5/6, -1/6, -1/30, 1/30, 1/42, -1/42, ...
-5/6, 2/3, 2/15, 1/15, -1/105, -1/21, ...
3/2, -8/15, -1/15, -8/105, -4/105, ...
-61/30, 7/15, -1/105, 4/105, ...
5/2, -10/21, 1/21, ...
-125/42, 11/21, ...
7/2, ...
etc.
The inverse binomial transform is the first column. a(n) is the n-th term of the numerators. See A027641(n+1).
Denominators: A176591.
Is a(4n+2) a multiple of 5? This is true, at least up to 4n+2 = 998. - Jean-François Alcover, Jul 02 2015
LINKS
FORMULA
a(n) = numerators of A027641(n)/A027642(n) - (-1)^n*n/2.
a(n) = (A176328(n) - (-1)^n*n)*A176591(n).
a(n) = 2*A027641(n)*A176591(n)/A027642(n) - A176328(n).
EXAMPLE
By the first formula: numerators of 1-0=1, -1/2+1/2=0, 1/6-1=-5/6, 0+3/2=3/2,....
MATHEMATICA
max = 40; B[1] = 1; B[n_] := BernoulliB[n]; BB = Array[B, max, 0]; a[n_] := Differences[BB, n] // First // Numerator; Table[a[n], {n, 0, max-1}] (* Jean-François Alcover, May 20 2015 *)
PROG
(PARI)
firstdiff(s) = my(t=vector(#s-1)); for(i=2, #s, t[i-1]=s[i]-s[i-1]); t
a257935(k) = {
my(s=[], b = concat([1, 1], vector(k, n, n++; bernfrac(n))));
until(#b<2,
s = concat(s, numerator(b[1]));
b = firstdiff(b)
);
s
}
a257935(50) \\ Colin Barker, May 13 2015
KEYWORD
sign
AUTHOR
Paul Curtz, May 13 2015
EXTENSIONS
More terms from Colin Barker, May 13 2015
STATUS
approved