login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027861
Numbers k such that k^2 + (k+1)^2 is prime.
39
1, 2, 4, 5, 7, 9, 12, 14, 17, 19, 22, 24, 25, 29, 30, 32, 34, 35, 39, 42, 47, 50, 60, 65, 69, 70, 72, 79, 82, 84, 85, 87, 90, 97, 99, 100, 102, 104, 109, 110, 115, 122, 130, 135, 137, 139, 144, 149, 154, 157, 160, 162, 164, 167, 172, 174, 185, 187, 189, 195, 199, 202
OFFSET
1,2
COMMENTS
k > 1 never ends in 1, 3, 6 or 8 (that is, k*(k+1) does not end in 2). - Lekraj Beedassy, Jul 09 2004
k can never be congruent to (1 or 3) mod 5, because if it were, then k^2 + (k+1)^2 would be divisible by 5. In other words, for k > 1, this sequence cannot contain any values in A047219. This means that we can immediately discard 40% of all possible k. - Dmitry Kamenetsky, Sep 02 2008
LINKS
T. D. Noe and Zak Seidov, Table of n, a(n) for n = 1..10000
Patrick De Geest, World!Of Numbers
FORMULA
a(n) = (A002731(n)-1)/2.
a(n) = (sqrt(2*A027862(n)-1)-1)/2. - Zak Seidov, Jul 22 2013
A010051(A001844(a(n))) = 1. - Reinhard Zumkeller, Jul 13 2014
MATHEMATICA
Select[Range[250], PrimeQ[#^2+(#+1)^2]&] (* Harvey P. Dale, Dec 31 2017 *)
PROG
(Magma) [n: n in [0..1000] |IsPrime(n^2 + (n+1)^2)]; // Vincenzo Librandi, Nov 19 2010
(Haskell)
a027861 n = a027861_list !! (n-1)
a027861_list = filter ((== 1) . a010051 . a001844) [0..]
-- Reinhard Zumkeller, Jul 13 2014
(PARI) is(n)=isprime(n^2 + (n+1)^2) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
Complement of A012132.
Cf. A002731. A027862 gives primes, A091277 gives prime indices.
Sequence in context: A286753 A325543 A214051 * A219648 A062428 A250000
KEYWORD
nonn,easy
STATUS
approved