Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:44:49
%S 1114,3413,8476,18247,35414,63529,107128,171851,264562,393469,568244,
%T 800143,1102126,1488977,1977424,2586259,3336458,4251301,5356492,
%U 6680279,8253574,10110073,12286376,14822107,17760034,21146189,25029988,29464351,34505822,40214689
%N a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.
%H Colin Barker, <a href="/A027622/b027622.txt">Table of n, a(n) for n = 0..1000</a>
%H Patrick De Geest, <a href="http://www.worldofnumbers.com/sumpower.htm">Palindromic Quasi_Under_Squares of the form n+(n+1)^2</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1).
%F From _Colin Barker_, Dec 05 2016: (Start)
%F a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
%F G.f.: (1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6.
%F (End)
%F E.g.f.: (1114 +2299*x +1382*x^2 +324*x^3 +31*x^4 +x^5)*exp(x). - _G. C. Greubel_, Aug 05 2022
%p seq( add((n+j)^(j+1), j=0..4), n=0..30); # _G. C. Greubel_, Aug 05 2022
%t Table[n +(n+1)^2 +(n+2)^3 +(n+3)^4 +(n+4)^5, {n, 0, 29}] (* _Alonso del Arte_, Nov 22 2016 *)
%t Table[ReleaseHold@ Total@ MapIndexed[#1^First@ #2 &, Rest@ FactorList[ Pochhammer[Hold@ n, 5]][[All, 1]]], {n, 0, 29}] (* or *)
%t CoefficientList[Series[(1114 -3271x +4708x^2 -3694x^3 +1522x^4 -259x^5)/(1-x)^6, {x, 0, 29}], x] (* _Michael De Vlieger_, Dec 05 2016 *)
%t Table[Total[Table[(n+k)^(k+1),{k,0,4}]],{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {1114,3413,8476,18247,35414,63529}, 30] (* _Harvey P. Dale_, Aug 04 2022 *)
%o (Magma)[n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5: n in [0..30]]; // _Vincenzo Librandi_, Dec 28 2010
%o (PARI) Vec((1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6 + O(x^30)) \\ _Colin Barker_, Dec 05 2016
%o (SageMath) [sum((n+j)^(j+1) for j in (0..4)) for n in (0..30)] # _G. C. Greubel_, Aug 05 2022
%Y Cf. A000027, A027620, A027621, A028387.
%K nonn,easy
%O 0,1
%A _Patrick De Geest_