login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027559
Number of 4-balanced strings of length n: let d(S)= #(1)'s in S - #(0)'s, then S is k-balanced if every substring T has -k<=d(T)<=k; here k=4.
2
1, 2, 4, 8, 16, 30, 58, 106, 200, 360, 668, 1190, 2182, 3858, 7012, 12328, 22256, 38958, 69962, 122042, 218248, 379656, 676636, 1174390, 2087222, 3615906, 6411716, 11090504, 19627984, 33907134, 59912410, 103385482, 182429768
OFFSET
0,2
COMMENTS
Also the number of strings of length n with the digits 2 and 3 with the property that the sum of the digits of all substrings of uneven length is not divisible by 5. An example with length 8 is 32332333 . - Herbert Kociemba, Apr 29 2017
FORMULA
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4).
a(0) = 1; for n>0 odd, a(n) = 7 * 3^floor(n/2) - F(n+4); for n>0 even, a(n) = 4 * 3^floor(n/2) - F(n+4) where F(n) is the n-th Fibonacci number. - Barry Guiduli (guiduli(AT)gmail.com), Jun 23 2005
G.f.: (1+x-2x^2-x^3+x^4) / ((1-x-x^2)(1-3x^2)). - David Callan, Jul 22 2008
MATHEMATICA
Join[{1}, LinearRecurrence[{1, 4, -3, -3}, {2, 4, 8, 16}, 30]] (* Vincenzo Librandi, Apr 30 2017 *)
PROG
(Magma) I:=[2, 4, 8, 16]; [1] cat [n le 4 select I[n] else Self(n-1)+4*Self(n-2)-3*Self(n-3)-3*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 30 2017
CROSSREFS
Sequence in context: A164185 A164180 A164179 * A344614 A337664 A378197
KEYWORD
nonn
AUTHOR
STATUS
approved