login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022246
Gaussian binomial coefficients [ n,6 ] for q = 8.
1
1, 299593, 79783113865, 20955593338439305, 5494724540479236953737, 1440453028909548546592331401, 377607559263493603746446715115145, 98987603216356624971042374274625033865, 25949007804224083420097621839124559742097033
OFFSET
6,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..6} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 05 2016
MATHEMATICA
Table[QBinomial[n, 6, 8], {n, 6, 20}] (* Vincenzo Librandi, Aug 05 2016 *)
PROG
(Sage) [gaussian_binomial(n, 6, 8) for n in range(6, 15)] # Zerinvary Lajos, May 27 2009
(Magma) r:=6; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016
CROSSREFS
Sequence in context: A254193 A254186 A253798 * A227700 A050257 A283209
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 05 2016
STATUS
approved