login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022249
Gaussian binomial coefficients [ n,9 ] for q = 8.
1
1, 153391689, 20914675798619273, 2812613653548502301460105, 377594800550975709003441429239433, 50681462910057431534320730090844329858697
OFFSET
9,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..9} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^9/((1 - x)*(1 - 8*x)*(1 - 64*x)*(1 - 512*x)*(1 - 4096*x)*(1 - 32768*x)*(1 - 262144*x)*(1 - 2097152*x)*(1 - 16777216*x)*(1 - 134217728*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
QBinomial[Range[9, 20], 9, 8] (* Harvey P. Dale, Dec 12 2011 *)
PROG
(Sage) [gaussian_binomial(n, 9, 8) for n in range(9, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
CROSSREFS
Sequence in context: A151696 A221555 A212941 * A204605 A289248 A251489
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved