login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022247
Gaussian binomial coefficients [ n,7 ] for q = 8.
1
1, 2396745, 5106121684105, 10729268895402608265, 22506402447071849965115017, 47200787357710533846587480462985, 98987603216356624971042374274625033865, 207592149047991945127896428337152713645086345, 435352316509302207932941670577738326850779860686473
OFFSET
7,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..7} (8^(n-i+1)-1)/(8^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
G.f.: x^7/((1 - x)*(1 - 8*x)*(1 - 64*x)*(1 - 512*x)*(1 - 4096*x)*(1 - 32768*x)*(1 - 262144*x)*(1 - 2097152*x)). - Ilya Gutkovskiy, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 7, 8], {n, 7, 20}] (* Vincenzo Librandi, Aug 06 2016 *)
PROG
(Sage) [gaussian_binomial(n, 7, 8) for n in range(7, 16)] # Zerinvary Lajos, May 27 2009
(Magma) r:=7; q:=8; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 06 2016
CROSSREFS
Sequence in context: A232413 A167890 A184496 * A198781 A104941 A251805
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 06 2016
STATUS
approved