login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022219
Gaussian binomial coefficients [ n,12 ] for q = 5.
1
1, 305175781, 77610214474995931, 19100611156944225555440431, 4670708278954101902438990598678556, 1140674654304411569828223908172341508228556, 278502847205686141650283863407927164540769884103556
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^12/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)*(1-15625*x)*(1-78125*x)*(1-390625*x)*(1-1953125*x)*(1-9765625*x)*(1-48828125*x)*(1-244140625*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..12} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 10 2016
MATHEMATICA
Table[QBinomial[n, 12, 5], {n, 12, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 5) for n in range(12, 18)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=12; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 07 2018
CROSSREFS
Sequence in context: A183800 A289908 A182990 * A285433 A104965 A251807
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 10 2016
STATUS
approved