login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022216
Gaussian binomial coefficients [ n,9 ] for q = 5.
1
1, 2441406, 4967053120931, 9779511680526143556, 19131218685276848401412931, 37377622327704219905090668384806, 73007841108236063781239140920167306681, 142595264882979563844964491038787206333791056
OFFSET
9,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^9/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)*(1-15625*x)*(1-78125*x)*(1-390625*x)*(1-1953125*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..9} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 10 2016
MATHEMATICA
Table[QBinomial[n, 9, 5], {n, 9, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
PROG
(Sage) [gaussian_binomial(n, 9, 5) for n in range(9, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=9; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 07 2018
CROSSREFS
Sequence in context: A184569 A210153 A144588 * A257195 A257188 A254988
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 10 2016
STATUS
approved