login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022217
Gaussian binomial coefficients [ n,10 ] for q = 5.
1
1, 12207031, 124176340230306, 1222439084242108174806, 11957012900737114492991256681, 116805081731088587940522831693775431, 1140747634121270227670449517400445860666056, 11140256209730412546658078532854767895273286916056
OFFSET
10,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
G.f.: x^10/((1-x)*(1-5*x)*(1-25*x)*(1-125*x)*(1-625*x)*(1-3125*x)*(1-15625*x)*(1-78125*x)*(1-390625*x)*(1-1953125*x)*(1-9765625*x)). - Vincenzo Librandi, Aug 10 2016
a(n) = Product_{i=1..10} (5^(n-i+1)-1)/(5^i-1), by definition. - Vincenzo Librandi, Aug 06 2016
MATHEMATICA
Table[QBinomial[n, 10, 5], {n, 10, 20}] (* Vincenzo Librandi, Aug 10 2016 *)
PROG
(Sage) [gaussian_binomial(n, 10, 5) for n in range(10, 17)] # Zerinvary Lajos, May 27 2009
(Magma) r:=10; q:=5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 10 2016
(PARI) r=10; q=5; for(n=r, 30, print1(prod(j=1, r, (1-q^(n-j+1))/(1-q^j)), ", ")) \\ G. C. Greubel, Jun 07 2018
CROSSREFS
Sequence in context: A204888 A268418 A286301 * A133373 A321987 A288272
KEYWORD
nonn,easy
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 10 2016
STATUS
approved