login
A018888
Numbers which are not the sum of seven nonnegative cubes.
6
15, 22, 23, 50, 114, 167, 175, 186, 212, 231, 238, 239, 303, 364, 420, 428, 454
OFFSET
1,1
COMMENTS
Old name: Write n = m_1^3 + ... +m_k^3 where the m_i are positive integers and k is minimal; sequence gives conjectured list of numbers for which k = 8 or 9.
23 and 239 require 9 cubes and no numbers require > 9 cubes.
Kadiri shows that a(n) < e^71000. - Charles R Greathouse IV, Dec 30 2014
Siksek shows that this sequence is complete. - Charles R Greathouse IV, May 05 2015
REFERENCES
J. Roberts, Lure of the Integers, entry 239.
F. Romani, Computations concerning Waring's problem, Calcolo, 19 (1982), 415-431.
LINKS
Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
Jean-Marc Deshouillers, Francois Hennecart and Bernard Landreau; appendix by I. Gusti Putu Purnaba, 7373170279850, Math. Comp. 69 (2000), 421-439.
K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.
Samir Siksek, Every integer greater than 454 is the sum of at most seven positive cubes, arXiv:1505.00647 [math.NT], 2015.
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Diophantine Equation--3rd Powers
Eric Weisstein's World of Mathematics, Waring's Problem
EXAMPLE
239 = 1^3 + 4(2^3) + 3(3^3) + 5^3 - requires 9 cubes.
MAPLE
N:= 10000:
C1:= {seq(i^3, i=0..floor(N^(1/3)))}:
C2:= select(`<=`, {seq(seq(a+b, a=C1), b=C1)}, N):
C3:= select(`<=`, {seq(seq(a+b, a=C1), b=C2)}, N):
C5:= select(`<=`, {seq(seq(a+b, a=C2), b=C3)}, N):
C7:= select(`<=`, {seq(seq(a+b, a=C2), b=C5)}, N):
{$1..N} minus C7; # Robert Israel, Dec 30 2014
MATHEMATICA
nn=10000; t=CoefficientList[Series[Sum[x^(k^3), {k, 0, Floor[nn^(1/3)]}]^7, {x, 0, nn}], x]; Flatten[Position[t, 0]]-1 (* T. D. Noe, Sep 05 2006 *)
Select[Range[500], PowersRepresentations[#, 7, 3] == {} &] (* Eric W. Weisstein, Sep 18 2024 *)
PROG
(PARI) S=sum(n=0, 7, x^n^3, O(x^455)); v=Vec(S^7); v=v[2..#v];
for(n=1, #v, if(v[n]==0, print1(n", "))) \\ Charles R Greathouse IV, May 05 2015
CROSSREFS
Cf. A018889.
Sequence in context: A066758 A338119 A297931 * A115174 A092783 A108638
KEYWORD
fini,full,nonn
AUTHOR
EXTENSIONS
Corrected by T. D. Noe, Sep 05 2006
Corrected the definition. - N. J. A. Sloane, Sep 25 2011
New name from Charles R Greathouse IV, Dec 30 2014
STATUS
approved