login
A015385
Gaussian binomial coefficient [ n,9 ] for q=-13.
23
1, -9847035132, 105044442632566365137, -1113436927250681654567602842120, 11807854622717155763702496765310830475383, -125216049699851612689080581288579246248342359563916
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
a(n) = Product_{i=1..9} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
MATHEMATICA
Table[QBinomial[n, 9, -13], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(PARI) A015385(n, r=9, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
(Magma) r:=9; q:=-13; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015321 (r=5), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015384. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A256622 A359344 A022251 * A027570 A202362 A204058
KEYWORD
sign,easy
STATUS
approved