login
A015321
Gaussian binomial coefficient [ n,5 ] for q = -13.
14
1, -344772, 128773405047, -47790911017216080, 17745052029585350965782, -6588595858168804130787130344, 2446300028783605805772822454177234, -908294062111964496034866469968025332240
OFFSET
5,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
FORMULA
a(n) = Product_{i=1..5} ((-13)^(n-i+1)-1)/((-13)^i-1). - M. F. Hasler, Nov 03 2012
MATHEMATICA
Table[QBinomial[n, 5, -13], {n, 5, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 5, -13) for n in range(5, 13)] # Zerinvary Lajos, May 27 2009
(PARI) A015321(n, r=5, q=-13)=prod(i=1, r, (q^(n-i+1)-1)/(q^i-1)) \\ M. F. Hasler, Nov 03 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,r] for q=-13: A015265 (r=2), A015286 (r=3), A015303 (r=4), A015337 (r=6), A015355 (r=7), A015370 (r=8), A015385 (r=9), A015402 (r=10), A015422 (r=11), A015438 (r=12). - M. F. Hasler, Nov 03 2012
Sequence in context: A235668 A235664 A235429 * A205420 A230717 A350458
KEYWORD
sign,easy
AUTHOR
Olivier GĂ©rard, Dec 11 1999
STATUS
approved