login
A011001
Binomial coefficient C(n,48).
98
1, 49, 1225, 20825, 270725, 2869685, 25827165, 202927725, 1420494075, 8996462475, 52179482355, 279871768995, 1399358844975, 6566222272575, 29078984349975, 122131734269895, 488526937079580, 1867897112363100, 6848956078664700, 24151581961607100
OFFSET
48,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (49, -1176, 18424, -211876, 1906884, -13983816, 85900584, -450978066, 2054455634, -8217822536, 29135916264, -92263734836, 262596783764, -675248872536, 1575580702584, -3348108992991, 6499270398159, -11554258485616, 18851684897584, -28277527346376, 39049918716424, -49699896548176, 58343356817424, -63205303218876, 63205303218876, -58343356817424, 49699896548176, -39049918716424, 28277527346376, -18851684897584, 11554258485616, -6499270398159, 3348108992991, -1575580702584, 675248872536, -262596783764, 92263734836, -29135916264, 8217822536, -2054455634, 450978066, -85900584, 13983816, -1906884, 211876, -18424, 1176, -49, 1).
FORMULA
G.f.: x^48/(1-x)^49. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=48} 1/a(n) = 48/47.
Sum_{n>=48} (-1)^n/a(n) = A001787(48)*log(2) - A242091(48)/47! = 6755399441055744*log(2) - 21594096339911519462651644572315136 / 4611673369413685575 = 0.9803635237... (End)
MAPLE
seq(binomial(n, 48), n=48..67); # Zerinvary Lajos, Dec 20 2008
MATHEMATICA
Table[Binomial[n, 48], {n, 48, 77}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
PROG
(PARI) a(n)=binomial(n, 48) \\ Charles R Greathouse IV, Jan 08 2013
(Magma) [Binomial(n, 48): n in [48..70]]; // Vincenzo Librandi, Jun 12 2013
(Python)
A011001_list, m = [], [1]*49
for _ in range(10**2):
A011001_list.append(m[-1])
for i in range(48):
m[i+1] += m[i] # Chai Wah Wu, Jan 24 2016
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved