login
A010998
a(n) = binomial coefficient C(n,45).
5
1, 46, 1081, 17296, 211876, 2118760, 18009460, 133784560, 886322710, 5317936260, 29248649430, 148902215280, 707285522580, 3155581562280, 13298522298180, 53194089192720, 202802465047245, 739632519584070, 2588713818544245, 8719878125622720, 28339603908273840
OFFSET
45,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (46, -1035, 15180, -163185, 1370754, -9366819, 53524680, -260932815, 1101716330, -4076350421, 13340783196, -38910617655, 101766230790, -239877544005, 511738760544, -991493848554, 1749695026860, -2818953098830, 4154246671960, -5608233007146, 6943526580276, -7890371113950, 8233430727600, -7890371113950, 6943526580276, -5608233007146, 4154246671960, -2818953098830, 1749695026860, -991493848554, 511738760544, -239877544005, 101766230790, -38910617655, 13340783196, -4076350421, 1101716330, -260932815, 53524680, -9366819, 1370754, -163185, 15180, -1035, 46, -1).
FORMULA
G.f.: x^45/(1-x)^46. - Zerinvary Lajos, Dec 20 2008
From Amiram Eldar, Dec 15 2020: (Start)
Sum_{n>=45} 1/a(n) = 45/44.
Sum_{n>=45} (-1)^(n+1)/a(n) = A001787(45)*log(2) - A242091(45)/44! = 791648371998720*log(2) - 14357776821749657880334247281129/26165522663340060 = 0.9791324188... (End)
MAPLE
seq(binomial(n, 45), n=45..67); # Zerinvary Lajos, Dec 20 2008
MATHEMATICA
Table[Binomial[n, 45], {n, 45, 77}] (* Vladimir Joseph Stephan Orlovsky, May 16 2011 *)
PROG
(Magma) [Binomial(n, 45): n in [45..70]]; // Vincenzo Librandi, Jun 12 2013
CROSSREFS
KEYWORD
nonn
STATUS
approved