# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a010998 Showing 1-1 of 1 %I A010998 #28 Dec 15 2023 11:07:11 %S A010998 1,46,1081,17296,211876,2118760,18009460,133784560,886322710, %T A010998 5317936260,29248649430,148902215280,707285522580,3155581562280, %U A010998 13298522298180,53194089192720,202802465047245,739632519584070,2588713818544245,8719878125622720,28339603908273840 %N A010998 a(n) = binomial coefficient C(n,45). %H A010998 T. D. Noe, Table of n, a(n) for n = 45..1000 %H A010998 Index entries for linear recurrences with constant coefficients, signature (46, -1035, 15180, -163185, 1370754, -9366819, 53524680, -260932815, 1101716330, -4076350421, 13340783196, -38910617655, 101766230790, -239877544005, 511738760544, -991493848554, 1749695026860, -2818953098830, 4154246671960, -5608233007146, 6943526580276, -7890371113950, 8233430727600, -7890371113950, 6943526580276, -5608233007146, 4154246671960, -2818953098830, 1749695026860, -991493848554, 511738760544, -239877544005, 101766230790, -38910617655, 13340783196, -4076350421, 1101716330, -260932815, 53524680, -9366819, 1370754, -163185, 15180, -1035, 46, -1). %F A010998 G.f.: x^45/(1-x)^46. - _Zerinvary Lajos_, Dec 20 2008 %F A010998 From _Amiram Eldar_, Dec 15 2020: (Start) %F A010998 Sum_{n>=45} 1/a(n) = 45/44. %F A010998 Sum_{n>=45} (-1)^(n+1)/a(n) = A001787(45)*log(2) - A242091(45)/44! = 791648371998720*log(2) - 14357776821749657880334247281129/26165522663340060 = 0.9791324188... (End) %p A010998 seq(binomial(n,45),n=45..67); # _Zerinvary Lajos_, Dec 20 2008 %t A010998 Table[Binomial[n,45],{n,45,77}] (* _Vladimir Joseph Stephan Orlovsky_, May 16 2011 *) %o A010998 (Magma) [Binomial(n, 45): n in [45..70]]; // _Vincenzo Librandi_, Jun 12 2013 %Y A010998 Cf. A010996, A010997, A001787, A242091. %K A010998 nonn %O A010998 45,2 %A A010998 _N. J. A. Sloane_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE