login
A010877
a(n) = n mod 8.
37
0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 0
OFFSET
0,3
COMMENTS
The rightmost digit in the base-8 representation of n. Also, the equivalent value of the three rightmost digits in the base-2 representation of n. - Hieronymus Fischer, Jun 12 2007
FORMULA
Complex representation: a(n) = (1/8)*(1-r^n)*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (1 - r^(n-m)) where r = exp(Pi/4*i) = (1+i)*sqrt(2)/2 and i=sqrt(-1).
Trigonometric representation: a(n) = 256*(sin(n*Pi/8))^2*Sum_{k=1..7} k*Product_{m=1..7, m<>k} (sin((n-m)*Pi/8))^2.
G.f.: g(x) = (Sum_{k=1..7}, k*x^k)/(1-x^8).
Also: g(x) = x(7x^8-8x^7+1)/((1-x^8)(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = n mod 2 + 2*(floor(n/2) mod 4) = A000035(n) + 2*A010873(A004526(n)).
a(n) = n mod 4 + 4*(floor(n/4) mod 2) = A010873(n) + 4*A000035(A002265(n)).
a(n) = n mod 2 + 2*(floor(n/2) mod 2) + 4*(floor(n/4) mod 2) = A000035(n) + 2*A000035(A004526(n)) + 4*A000035(A002265(n)). - Hieronymus Fischer, Jun 12 2007
a(n) = (1/2)*(7 - (-1)^n - 2*(-1)^(b/4) - 4*(-1)^((b - 2 + 2*(-1)^(b/4))/8)) where b = 2n - 1 + (-1)^n. - Hieronymus Fischer, Jun 12 2007
General formula for period 2^k: a(n) = (1/2)*(2^k - 1 - Sum_{j=0..k-1} 2^j*(-1)^p(j,n)) where p(j,n) is defined recursively by p(0,n)=n, p(j,n) = (1/4)*(2*p(j-1,n) - 1 + (-1)^p(j-1,n)). - Hieronymus Fischer, Jun 14 2007
a(n) = floor(1234567/99999999*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(48913/2396745*8^(n+1)) mod 8. - Hieronymus Fischer, Jan 04 2013
MATHEMATICA
Table[Mod[n, 8], {n, 0, 120}] (* Harvey P. Dale, Apr 21 2011 *)
PROG
(PARI) vector(100, i, i)%8 \\ Charles R Greathouse IV, Jul 16 2011
(Python)
def A010877(n): return n&7 # Chai Wah Wu, Jul 09 2022
CROSSREFS
Partial sums: A130486. Other related sequences A130481, A130482, A130483, A130484, A130485.
Sequence in context: A037850 A037886 A031045 * A372352 A309959 A257848
KEYWORD
nonn,easy
EXTENSIONS
Formula section re-edited for better readability by Hieronymus Fischer
STATUS
approved