OFFSET
0,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,1).
FORMULA
Complex representation: a(n) = (1/7)*(1-r^n) * Sum_{1<=k<7} k * Product_{1<=m<7, m<>k} (1-r^(n-m)) where r=exp(2*pi/7*i) and i=sqrt(-1).
Trigonometric representation: a(n) = (64/7)^2*(sin(n*pi/7))^2*Sum_{1<=k<7} k*Product_{1<=m<7,m<>k} sin((n-m)*pi/7)^2.
G.f.: ( Sum_{1<=k<7} k*x^k ) / (1 - x^7).
G.f.: x*(6*x^7-7*x^6+1)/((1-x^7)*(1-x)^2). - Hieronymus Fischer, May 31 2007
a(n) = floor(41152/3333333*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 03 2013
a(n) = floor(7625/274514*7^(n+1)) mod 7. - Hieronymus Fischer, Jan 04 2013
PROG
(Sage) [power_mod(n, 7, 7) for n in range(0, 81)] # Zerinvary Lajos, Nov 07 2009
(PARI) a(n)=n%7 \\ Charles R Greathouse IV, Dec 05 2011
(Magma) &cat [[0..6]^^20]; // Bruno Berselli, Jun 09 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Formula section re-edited for better readability by Hieronymus Fischer, Dec 05 2011
STATUS
approved