OFFSET
0,6
COMMENTS
a(n) is the number of partitions of n into parts 1, 5, and 25. - Joerg Arndt, Sep 07 2019
REFERENCES
D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 105.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 221
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, -1, 1).
FORMULA
G.f.: 1/((1-x)*(1-x^5)*(1-x^25)).
MAPLE
seq(coeff(series(1/((1-x)*(1-x^5)*(1-x^25)), x, n+1), x, n), n = 0 .. 70); # modified by G. C. Greubel, Sep 06 2019
MATHEMATICA
CoefficientList[Series[1/((1-x)*(1-x^5)*(1-x^25)), {x, 0, 70}], x] (* G. C. Greubel, Sep 06 2019 *)
PROG
(PARI) my(x='x+O('x^70)); Vec(1/((1-x)*(1-x^5)*(1-x^25))) \\ G. C. Greubel, Sep 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)*(1-x^5)*(1-x^25)) )); // G. C. Greubel, Sep 06 2019
(Sage)
def A008648_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(1/((1-x)*(1-x^5)*(1-x^25))).list()
A008648_list(70) # G. C. Greubel, Sep 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved