login
A008647
Expansion of g.f.: (1+x^9)/((1-x^4)*(1-x^6)).
2
1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 2, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 5, 4, 4, 4, 5, 4, 5, 4, 5, 5, 5, 4, 6, 5, 5, 5, 6, 5, 6, 5, 6, 6, 6, 5, 7, 6, 6, 6, 7, 6
OFFSET
0,13
COMMENTS
Molien series of binary octahedral group of order 48. Also Molien series for W_1 - W_3 of shadow of singly-even binary self-dual code.
REFERENCES
T. A. Springer, Invariant Theory, Lecture Notes in Math., Vol. 585, Springer, p. 97.
LINKS
Eiichi Bannai, Etsuko Bannai, Michio Ozeki and Yasuo Teranishi, On the ring of simultaneous invariants for the Gleason-MacWilliams group, European J. Combin. 20 (1999), 619-627.
J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1334.
E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
FORMULA
G.f.: ( 1 - x^3 + x^6) / ( (1+x)*(1+x+x^2)*(1+x^2)*(1-x)^2 ).
G.f.: (1+x^18)/((1-x^8)*(1-x^12) = (1+x^6+x^9+x^15)/((1-x^4)*(1-x^12)).
It appears that the first differences have period 12. Hence in blocks of 12, the sequence is {1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0}+k for k=0,1,2,... - T. D. Noe, May 23 2008
a(n) = (6*A057077(n) +8*A057078(n) +1 +2*n +9*(-1)^n)/24. - R. J. Mathar, Jun 28 2009
a(n) = a(n-3) + a(n-4) - a(n-7), a(0)=1, a(1)=0, a(2)=0, a(3)=0, a(4)=1, a(5)=0, a(6)=1. - Harvey P. Dale, Oct 10 2011
a(n) = floor((9*(-1)^n+2*(n+7)+6*(-1)^floor(n/2))/24). - Tani Akinari, Jun 17 2013
a(n) = floor(n/2) + floor(n/3) + floor(n/4) - n + 1. - Ridouane Oudra, Mar 21 2021
MAPLE
g:= proc(n) local m, r; m:= iquo(n, 12, 'r'); irem(r+1, 2) *(m+1) -`if`(r=2, 1, 0) end: a:= n-> g(n) +`if`(n>8, g(n-9), 0); seq(a(n), n=0..100); # Alois P. Heinz, Oct 06 2008
MATHEMATICA
CoefficientList[Series[(1+x^9)/((1-x^4)*(1-x^6)), {x, 0, 80}], x] (* or *) LinearRecurrence[{0, 0, 1, 1, 0, 0, -1}, {1, 0, 0, 0, 1, 0, 1}, 80] (* Harvey P. Dale, Oct 10 2011 *)
PROG
(PARI) a(n)=(9*(-1)^n+2*(n+7)+6*(-1)^(n\2))\24 \\ Charles R Greathouse IV, Feb 10 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 80); Coefficients(R!( (1+x^9)/((1-x^4)*(1-x^6)) )); // G. C. Greubel, Sep 06 2019
(Sage)
def A008647_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P((1+x^9)/((1-x^4)*(1-x^6))).list()
A008647_list(80) # G. C. Greubel, Sep 06 2019
(GAP) a:=[1, 0, 0, 0, 1, 0, 1];; for n in [8..80] do a[n]:=a[n-3]+a[n-4]-a[n-7]; od; a; # G. C. Greubel, Sep 06 2019
CROSSREFS
Sequence in context: A335449 A318464 A051265 * A036475 A330746 A316555
KEYWORD
nonn,easy,nice
STATUS
approved