login
A007435
Inverse Moebius transform of Fibonacci numbers 1,1,2,3,5,8,...
(Formerly M0631)
13
1, 2, 3, 5, 6, 12, 14, 26, 37, 62, 90, 159, 234, 392, 618, 1013, 1598, 2630, 4182, 6830, 10962, 17802, 28658, 46548, 75031, 121628, 196455, 318206, 514230, 832722, 1346270, 2179322, 3524670, 5704486, 9227484, 14933129, 24157818, 39092352, 63246222, 102341006
OFFSET
1,2
COMMENTS
For p prime, a(p) == k (mod p) where k = 0 if p == 2, 3 (mod 5), k = 2 if p == 1, 4 (mod 5) and k = 1 if p = 5. - Michael Somos, Apr 15 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Transforms
FORMULA
Row sums of A051731 * A127647. - Gary W. Adamson, Jan 22 2007
G.f.: Sum_{k>0} Fibonacci(k)*x^k/(1-x^k) = Sum_{k>0} x^k/(1-x^k-x^(2*k)). - Vladeta Jovovic, Dec 17 2002
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(Fibonacci(k)/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 20 2018
a(n) ~ 5^(-1/2) * phi^n, where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, May 21 2018
EXAMPLE
x + 2*x^2 + 3*x^3 + 5*x^4 + 6*x^5 + 12*x^6 + 14*x^7 + 26*x^8 + 37*x^9 + 62*x^10 + ...
MATHEMATICA
Table[Plus @@ Map[Function[d, Fibonacci[d]], Divisors[n]], {n, 100}] (* T. D. Noe, Aug 14 2012 *)
a[n_] := DivisorSum[n, Fibonacci]; Array[a, 40] (* Jean-François Alcover, Dec 01 2015 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv( n, k, fibonacci(k)))} /* Michael Somos, Apr 15 2012 */
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Joerg Arndt, Aug 14 2012
STATUS
approved