login
A007437
Inverse Moebius transform of triangular numbers.
(Formerly M3309)
32
1, 4, 7, 14, 16, 31, 29, 50, 52, 74, 67, 119, 92, 137, 142, 186, 154, 247, 191, 294, 266, 323, 277, 455, 341, 446, 430, 553, 436, 686, 497, 714, 634, 752, 674, 1001, 704, 935, 878, 1150, 862, 1298, 947, 1323, 1222, 1361, 1129, 1767, 1254, 1674, 1486, 1834
OFFSET
1,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, arXiv:math/0205301 [math.CO], 2002; Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
Coefficients in expansion of Sum_{n >= 1} x^n/(1-x^n)^3.
G.f.: Sum_{n>=1} (n*(n+1)/2) * x^n/(1-x^n). - Joerg Arndt, Jan 30 2011
a(n) = Sum_{d|n} d*(d+1)/2 = (1/2)*(sigma(n) + sigma_2(n)) = (1/2)*(A000203(n) + A001157(n)). - Benoit Cloitre, Apr 08 2002
Row sums of triangles A134544 and A134545. - Gary W. Adamson, Oct 31 2007
Row sums of triangle A134839 - Gary W. Adamson, Nov 12 2007
Dirichlet g.f. zeta(s)*(zeta(s-1) + zeta(s-2))/2. - Franklin T. Adams-Watters, Nov 05 2009
L.g.f.: -log(Product_{k>=1} (1 - x^k)^((k+1)/2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ Zeta(3) * n^3 / 6. - Vaclav Kotesovec, Nov 06 2018
a(n) = Sum_{i=1..n} i*A135539(n,i). - Ridouane Oudra, Jul 22 2022
MAPLE
with(numtheory):
a:= proc(n) option remember;
add(d*(d+1)/2, d=divisors(n))
end:
seq(a(n), n=1..60); # Alois P. Heinz, Feb 09 2011
MATHEMATICA
a[n_] := (DivisorSigma[1, n] + DivisorSigma[2, n])/2; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Mar 10 2014, after Benoit Cloitre *)
PROG
(PARI) a(n)=if(n<1, 1, sumdiv(n, d, (d^2+d))/2); /* Joerg Arndt, Aug 14 2012 */
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, binomial(k+1, 2)*x^k/(1-x^k))) \\ Seiichi Manyama, Apr 19 2021
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Christian G. Bower.
STATUS
approved