OFFSET
0,4
REFERENCES
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
R. W. Robinson, Computer print-out, no date. Gives first 29 terms.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..100 (terms 1..29 from R. W. Robinson)
Élie de Panafieu, Asymptotic expansion of regular and connected regular graphs, arXiv:2408.12459 [math.CO], 2024. See p. 13.
R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
R. W. Robinson, Cubic labeled graphs, computer print-out, n.d.
FORMULA
Conjecture: a(n) ~ 2^(n + 1/2) * 3^n * n^(3*n) / exp(3*n+2). - Vaclav Kotesovec, Feb 17 2024
EXAMPLE
From R. J. Mathar, Oct 18 2018: (Start)
For n=3, 2*n=6, the A002851(n)=2 graphs have multiplicities of 10 and 60 (sum 70).
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 02 2019
STATUS
approved