login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004108
Number of n-node unlabeled connected graphs without endpoints.
(Formerly M2910)
24
1, 1, 0, 1, 3, 11, 61, 507, 7442, 197772, 9808209, 902884343, 153723152913, 48443147912137, 28363697921914475, 30996525982586676021, 63502034385272108655525, 244852545421597419740767106, 1783161611489937453151313949442, 24603891216883233547700609793901996
OFFSET
0,5
COMMENTS
Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..26 from R. W. Robinson)
David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
Hemanshu Kaul and Jeffrey A. Mudrock, Counting List Colorings of Unlabeled Graphs, arXiv:2409.06063 [math.CO], 2024. See p. 6.
Goran Kilibarda, Enumeration of Unlabeled Mating Graphs, Graphs and Combinatorics, Volume 23, Number 2 / April, 2007, pp. 183-199.
Eric Weisstein's World of Mathematics, Connected Graph..
FORMULA
Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018
MATHEMATICA
terms = 19;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
A004110 = Table[b[n], {n, 1, terms-1}];
Join[{1}, EULERi[A004110]] (* Jean-François Alcover, Jan 21 2019, after Andrew Howroyd *)
CROSSREFS
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004110 (Euler Transform, n-node unlabeled graphs without endpoints).
Cf. A006024, A092430 (n-node labeled connected mating graphs).
See also A261919.
Counts include those for distance-critical graphs, A349402.
Sequence in context: A024528 A368880 A273468 * A203007 A343774 A296321
KEYWORD
nonn
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018
STATUS
approved