OFFSET
0,5
COMMENTS
Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 1..26 from R. W. Robinson)
David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
Hemanshu Kaul and Jeffrey A. Mudrock, Counting List Colorings of Unlabeled Graphs, arXiv:2409.06063 [math.CO], 2024. See p. 6.
Goran Kilibarda, Enumeration of Unlabeled Mating Graphs, Graphs and Combinatorics, Volume 23, Number 2 / April, 2007, pp. 183-199.
R. W. Robinson, Connected graphs without endpoints - computer printout.
Eric Weisstein's World of Mathematics, Connected Graph..
FORMULA
Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018
MATHEMATICA
terms = 19;
mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
A004110 = Table[b[n], {n, 1, terms-1}];
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Andrew Howroyd, Sep 09 2018
STATUS
approved