login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A004110
Number of n-node unlabeled graphs without endpoints (i.e., no nodes of degree 1).
(Formerly M1504)
33
1, 1, 1, 2, 5, 16, 78, 588, 8047, 205914, 10014882, 912908876, 154636289460, 48597794716736, 28412296651708628, 31024938435794151088, 63533059372622888758054, 244916078509480823407040988, 1783406527599529094009748567708, 24605674623474428415849066062642456
OFFSET
0,4
COMMENTS
a(n) is also the number of unlabeled mating graphs with n nodes. A mating graph has no two vertices with identical sets of neighbors. - Tanya Khovanova, Oct 23 2008
REFERENCES
F. Harary, Graph Theory, Wiley, 1969. See illustrations in Appendix 1.
F. Harary and E. Palmer, Graphical Enumeration, (1973), compare formula (8.7.11).
R. W. Robinson, personal communication.
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..26 from R. W. Robinson)
David Cook II, Nested colourings of graphs, arXiv preprint arXiv:1306.0140 [math.CO], 2013.
Ira M. Gessel and Ji Li, Enumeration of point-determining graphs, J. Combinatorial Theory Ser. A 118 (2011), 591-612.
Hemanshu Kaul and Jeffrey A. Mudrock, Counting List Colorings of Unlabeled Graphs, arXiv:2409.06063 [math.CO], 2024. See p. 6.
Ronald C. Read, The enumeration of mating-type graphs, Report CORR 89-38, Dept. Combinatorics and Optimization, Univ. Waterloo, 1989.
N. J. A. Sloane, Illustration of a(0)-a(5).
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t * k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
a[n_] := Sum[permcount[p] * 2^edges[p] * Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}]; a[0] = 1;
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
PROG
(PARI) \\ Compare A000088.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
a(n) = {my(s=0); sum(k=1, n, forpart(p=k, s+=permcount(p) * 2^edges(p) * polcoef(prod(i=1, #p, 1-x^p[i]), n-k)/k!)); s} \\ Andrew Howroyd, Sep 09 2018
CROSSREFS
Row sums of A123551.
Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004108 (n-node connected unlabeled graphs without endpoints), A006024 (number of labeled mating graphs with n nodes), A129584 (bi-point-determining graphs).
If isolated nodes are forbidden, see A261919.
Cf. A000088.
Sequence in context: A263914 A218168 A054960 * A236960 A290609 A048754
KEYWORD
nonn
STATUS
approved