OFFSET
1,2
COMMENTS
Sum of the divisors of the prime shifted n, or equally, sum of the prime shifted divisors of n. - Antti Karttunen, Aug 17 2020
LINKS
FORMULA
Multiplicative with a(p^e) = (q^(e+1)-1)/(q-1) where q = nextPrime(p). - David W. Wilson, Sep 01 2001
From Antti Karttunen, Aug 06-12 2020: (Start)
a(n) is odd if and only if n is a square.
(End)
Sum_{k=1..n} a(k) ~ c * n^3, where c = (1/2) * Product_{p prime} p^3/((p+1)*(p^2-nextprime(p))) = 3.39513795..., where nextprime is A151800. - Amiram Eldar, Dec 08 2022
MATHEMATICA
b[1] = 1; b[p_?PrimeQ] := b[p] = Prime[ PrimePi[p] + 1]; b[n_] := b[n] = Times @@ (b[First[#]]^Last[#] &) /@ FactorInteger[n]; a[n_] := Sum[ b[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jul 18 2013 *)
PROG
(PARI) aPrime(p, e)=my(q=nextprime(p+1)); (q^(e+1)-1)/(q-1)
a(n)=my(f=factor(n)); prod(i=1, #f~, aPrime(f[i, 1], f[i, 2])) \\ Charles R Greathouse IV, Jul 18 2013
(PARI) A003973(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); sigma(factorback(f)); }; \\ Antti Karttunen, Aug 06 2020
(Python)
from math import prod
from sympy import factorint, nextprime
def A003973(n): return prod(((q:=nextprime(p))**(e+1)-1)//(q-1) for p, e in factorint(n).items()) # Chai Wah Wu, Jul 05 2022
CROSSREFS
Cf. A000203, A000290 (positions of odd terms), A003961, A007814, A048673, A108228, A151800, A295664, A336840.
Permutation of A008438.
Used in the definitions of the following sequences: A326042, A336838, A336841, A336844, A336846, A336847, A336848, A336849, A336850, A336851, A336852, A336856, A336931, A336932.
Cf. also A003972.
KEYWORD
nonn,easy,mult
AUTHOR
EXTENSIONS
More terms from David W. Wilson, Aug 29 2001
Secondary name added by Antti Karttunen, Aug 06 2020
STATUS
approved