login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003504
a(0)=a(1)=1; thereafter a(n+1) = (1/n)*Sum_{k=0..n} a(k)^2 (a(n) is not always integral!).
(Formerly M0728)
12
1, 1, 2, 3, 5, 10, 28, 154, 3520, 1551880, 267593772160, 7160642690122633501504, 4661345794146064133843098964919305264116096, 1810678717716933442325741630275004084414865420898591223522682022447438928019172629856
OFFSET
0,3
COMMENTS
The sequence appears with a different offset in some other sources. - Michael Somos, Apr 02 2006
Also known as Göbel's (or Goebel's) Sequence. Asymptotically, a(n) ~ n*C^(2^n) where C=1.0478... (A115632). A more precise asymptotic formula is given in A116603. - M. F. Hasler, Dec 12 2007
Let s(n) = (n-1)*a(n). By considering the p-adic representation of s(n) for primes p=2,3,...,43, one finds that a(44) is the first nonintegral value in this sequence. Furthermore, for n>44, the valuation of s(n) w.r.t. 43 is -2^(n-44), implying that both s(n) and a(n) are nonintegral. - M. F. Hasler and Max Alekseyev, Mar 03 2009
a(44) is approximately 5.4093*10^178485291567. - Hans Havermann, Nov 14 2017.
The fractional part is simply 24/43 (see page 709 of Guy (1988)).
The more precise asymptotic formula is a(n+1) ~ C^(2^n) * (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...). - Michael Somos, Mar 17 2012
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Sect. E15.
Clifford Pickover, A Passion for Mathematics, 2005.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hibiki Gima, Toshiki Matsusaka, Taichi Miyazaki, and Shunta Yara, On integrality and asymptotic behavior of the (k,l)-Göbel sequences, arXiv:2402.09064 [math.NT], 2024. See p. 1.
R. K. Guy, Letter to N. J. A. Sloane, Sep 25 1986.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712.
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
H. Ibstedt, Some sequences of large integers, Fibonacci Quart. 28 (1990), 200-203
H. W. Lenstra, Jr., R. K. Guy, and N. J. A. Sloane, Correspondence, 1975-1978
Rinnosuke Matsuhira, Toshiki Matsusaka, and Koki Tsuchida, How long can k-Göbel sequences remain integers?, arXiv:2307.09741 [math.NT], 2023.
D. Rusin, Law of small numbers [Broken link]
D. Rusin, Law of small numbers [Cached copy]
Alex Stone, The Astonishing Behavior of Recursive Sequences, Quanta Magazine, Nov 16 2023, 13 pages.
Eric Weisstein's World of Mathematics, Göbel's Sequence
FORMULA
a(n+1) = ((n-1) * a(n) + a(n)^2) / n if n > 1. - Michael Somos, Apr 02 2006
0 = a(n)*(+a(n)*(a(n+1) - a(n+2)) - a(n+1) - a(n+1)^2) +a(n+1)*(a(n+1)^2 - a(n+2)) if n>1. - Michael Somos, Jul 25 2016
EXAMPLE
a(3) = (1 * 2 + 2^2) / 2 = 3 given a(2) = 2.
MAPLE
a:=2: L:=1, 1, a: n:=15: for k to n-2 do a:=a*(a+k)/(k+1): L:=L, a od:L; # Robert FERREOL, Nov 07 2015
MATHEMATICA
a[n_] := a[n] = Sum[a[k]^2, {k, 0, n-1}]/(n-1); a[0] = a[1] = 1; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Feb 06 2013 *)
With[{n = 14}, Nest[Append[#, (#.#)/(Length[#] - 1)] &, {1, 1}, n - 2]] (* Jan Mangaldan, Mar 21 2013 *)
PROG
(PARI) A003504(n, s=2)=if(n-->0, for(k=1, n-1, s+=(s/k)^2); s/n, 1) \\ M. F. Hasler, Dec 12 2007
(Python)
a=2; L=[1, 1, a]; n=15
for k in range(1, n-1):
....a=a*(a+k)//(k+1)
....L.append(a)
L # Robert FERREOL, Nov 07 2015
CROSSREFS
Cf. A005166, A005167, A097398, A108394, A115632, A116603 (asymptotic formula).
Sequence in context: A000617 A132183 A259878 * A213169 A330333 A003182
KEYWORD
nonn,easy,nice
EXTENSIONS
a(0)..a(43) are integral, but from a(44) onwards every term is nonintegral - H. W. Lenstra, Jr.
Corrected and extended by M. F. Hasler, Dec 12 2007
Further corrections from Max Alekseyev, Mar 04 2009
STATUS
approved