login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A003502
The smaller of a betrothed pair.
9
48, 140, 1050, 1575, 2024, 5775, 8892, 9504, 62744, 186615, 196664, 199760, 266000, 312620, 526575, 573560, 587460, 1000824, 1081184, 1139144, 1140020, 1173704, 1208504, 1233056, 1236536, 1279950, 1921185, 2036420, 2102750, 2140215, 2171240, 2198504, 2312024
OFFSET
1,1
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B5.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..4122 (terms < 10^13, terms 1..1000 from Donovan Johnson, 1001..1126 from Amiram Eldar)
P. Hagis and G. Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), 608-611.
Jan Munch Pedersen, Tables of Aliquot Cycles
EXAMPLE
48 is a term because sigma(48) - 48 - 1 = 124 - 48 - 1 = 75 and 48 < 75 and sigma(75) - 75 - 1 = 124 - 75 - 1 = 48. - David A. Corneth, Jan 24 2019
MATHEMATICA
aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]] [[1]] (* Amiram Eldar, Jan 24 2019 after Harvey P. Dale at A007992 *)
PROG
(PARI) is(n) = m = sigma(n) - n - 1; if(m == 0 || n >= m, return(0)); n == sigma(m) - m - 1 \\ David A. Corneth, Jan 24 2019
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
Extended by T. D. Noe, Dec 29 2011
STATUS
approved