login
A000684
Number of colored labeled n-node graphs with 2 interchangeable colors.
(Formerly M2954 N1192)
29
1, 3, 13, 81, 721, 9153, 165313, 4244481, 154732801, 8005686273, 587435092993, 61116916981761, 9011561121239041, 1882834327457349633, 557257804202631217153, 233610656002563147038721, 138681207656726645785559041
OFFSET
1,2
COMMENTS
a(n) = A058872(n) + 1. This sequence counts the empty graph on n nodes which is not allowed in A058872. - Geoffrey Critzer, Oct 07 2012
REFERENCES
R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..100 (first 32 terms from R. W. Robinson)
S. R. Finch, Bipartite, k-colorable and k-colored graphs, June 5, 2003. [Cached copy, with permission of the author]
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68. (Annotated scanned copy)
D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19. [Annotated scanned copy]
A. Nymeyer and R. W. Robinson, Tabulation of the Numbers of Labeled Bipartite Blocks and Related Classes of Bicolored Graphs, 1982 [Annotated scanned copy of unpublished MS and letter from R.W.R.]
FORMULA
G.f.: A(x) = Sum_{n>=1} x^n/(1 - 2^n*x)^n. - Paul D. Hanna, Sep 14 2009
G.f.: 1/(W(0)-x) where W(k) = x*(x*2^k-1)^k - (x*2^(k+1)-1)^(k+1) + x*((2*x*2^k-1)^(2*k+2))/W(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Sep 17 2012
From Peter Bala, Apr 01 2013: (Start)
a(n) = Sum_{k = 0..n-1} binomial(n-1,k)*2^(k*(n-k)).
a(n) = Sum_{k = 0..n} 2^k*A111636(n,k).
Let E(x) = Sum_{n >= 0} x^n/(n!*2^C(n,2)). Then a generating function for this sequence (but with an offset of 0) is E(x)*E(2*x) = Sum_{n >= 0} a(n+1)*x^n/(n!*2^C(n,2)) = 1 + 3*x + 13*x^2/(2!*2) + 81*x^3/(3!*2^3) + 721*x^4/(4!*2^6) + .... Cf. A134531. (End)
MATHEMATICA
With[{nn=20}, Rest[CoefficientList[Series[Sum[x^n/(1-2^n x)^n, {n, nn}], {x, 0, nn}], x]]] (* Harvey P. Dale, Nov 24 2011 *)
PROG
(PARI) a(n)=polcoeff(sum(k=1, n, x^k/(1-2^k*x +x*O(x^n))^k), n) \\ Paul D. Hanna, Sep 14 2009
CROSSREFS
2 * A000683(n) + 1.
Sequence in context: A005923 A335588 A089461 * A222272 A057993 A208810
KEYWORD
nonn,nice,easy
EXTENSIONS
a(15) onwards added by N. J. A. Sloane, Oct 19 2006 from the Robinson reference
STATUS
approved