OFFSET
0,2
COMMENTS
An inverse Chebyshev transform of C(3,n)=(1,3,3,1,0,0,0,...), where g(x)->(1/sqrt(1-4x^2))g(xc(x^2)). In general, (1+xc(x^2))^r/sqrt(1-4x^2) has general term a(n)=sum{k=0..floor(n/2), binomial(n,k)*binomial(r,n-2k)}, r>0.
LINKS
Piera Manara and Claudio Perelli Cippo, The fine structure of 4321 avoiding involutions and 321 avoiding involutions, PU. M. A. Vol. 22 (2011), 227-238. - From N. J. A. Sloane, Oct 13 2012
FORMULA
a(n)=sum{k=0..floor(n/2), binomial(n, k)*binomial(3, n-2k)}.
D-finite with recurrence: -(n+3)*(3*n-2)*a(n) +12*n*a(n-1) +4*(3*n+1)*(n-1)*a(n-2)=0. - R. J. Mathar, Jan 04 2017
a(n) ~ 2^(n + 5/2) / sqrt(Pi*n). - Vaclav Kotesovec, Sep 28 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 13 2005
STATUS
approved