Skip to main content
Advertisement

Main menu

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Methods & Resources
    • Author Interviews
    • Archive
    • Subjects
  • Collections
  • Submit
    • Submit a Manuscript
    • Author Guidelines
    • License, Copyright, Fee
    • FAQ
    • Why submit
  • About
    • About Us
    • Editors & Staff
    • Board Members
    • Licensing and Reuse
    • Reviewer Guidelines
    • Privacy Policy
    • Advertise
    • Contact Us
    • LSA LLC
  • Alerts
  • Other Publications
    • EMBO Press
    • The EMBO Journal
    • EMBO reports
    • EMBO Molecular Medicine
    • Molecular Systems Biology
    • Rockefeller University Press
    • Journal of Cell Biology
    • Journal of Experimental Medicine
    • Journal of General Physiology
    • Journal of Human Immunity
    • Cold Spring Harbor Laboratory Press
    • Genes & Development
    • Genome Research

User menu

  • My alerts

Search

  • Advanced search
Life Science Alliance
  • Other Publications
    • EMBO Press
    • The EMBO Journal
    • EMBO reports
    • EMBO Molecular Medicine
    • Molecular Systems Biology
    • Rockefeller University Press
    • Journal of Cell Biology
    • Journal of Experimental Medicine
    • Journal of General Physiology
    • Journal of Human Immunity
    • Cold Spring Harbor Laboratory Press
    • Genes & Development
    • Genome Research
  • My alerts
Life Science Alliance

Advanced Search

  • Home
  • Articles
    • Newest Articles
    • Current Issue
    • Methods & Resources
    • Author Interviews
    • Archive
    • Subjects
  • Collections
  • Submit
    • Submit a Manuscript
    • Author Guidelines
    • License, Copyright, Fee
    • FAQ
    • Why submit
  • About
    • About Us
    • Editors & Staff
    • Board Members
    • Licensing and Reuse
    • Reviewer Guidelines
    • Privacy Policy
    • Advertise
    • Contact Us
    • LSA LLC
  • Alerts
  • Follow LSA on Bluesky
  • Follow lsa Template on Twitter
Correction
Open Access

Correction: Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae

View ORCID ProfileFrancois El-Daher  Correspondence email, View ORCID ProfileStephen J Enos, Louisa K Drake, View ORCID ProfileDaniel Wehner, Markus Westphal, Nicola J Porter, Catherina G Becker, View ORCID ProfileThomas Becker
Francois El-Daher
1Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Francois El-Daher
  • For correspondence: [email protected]
Stephen J Enos
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stephen J Enos
Louisa K Drake
1Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel Wehner
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
3Max Planck Institute for the Science of Light, Erlangen, Germany
4Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Wehner
Markus Westphal
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicola J Porter
1Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catherina G Becker
1Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
5Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Becker
1Centre for Discovery Brain Sciences, University of Edinburgh Medical School: Biomedical Sciences, Edinburgh, UK
2Center for Regenerative Therapies Dresden at the TU Dresden, Dresden, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thomas Becker
Published 25 November 2024. DOI: 10.26508/lsa.202403129
  • Article
  • Info
  • Metrics
  • PDF
Loading

Article: El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T (2024 Oct 17) Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 8(1): e202403052. doi: https://doi.org/10.26508/lsa.202403052. PMID: 39419547.

Note from the authors:

In this correction, we have updated the citations and reference list in the Materials and Methods section to rectify inaccuracies in the original publication. Specifically, we corrected the author names and publication years for several references to ensure proper attribution and accuracy. These changes do not affect the results or conclusions of the study but are made to maintain the integrity and reliability of the scientific record.

Materials and Methods

Fish husbandry

All zebrafish lines were kept and raised under standard conditions (Westerfield, 2000) and all experiments were approved by the UK Home Office (project license no.: PP8160052) or according to German animal welfare regulations with the permission of the Free State of Saxony (project license no.: TVV36/2021). Following the guidelines of the 3Rs, we only used larvae aged up to 5 dpf. For experimental analyses, we used larvae of either sex of the following available zebrafish lines: Tg(Xla.Tubb:DsRed)zf148 (Peri & Nüsslein-Volhard, 2008); Tg(betaactin:utrophin-mCherry)e119 (Compagnon et al, 2014); Tg(h2a.F/Z:GFP)kca6 (Pauls et al, 2001) (referred to as Tg(h2a:GFP)); Tg(mpeg1.1:GFP)gl22 (Ellett et al, 2011); Tg(mpeg1.1:mCherry)gl23 (Ellett et al, 2011); Tg(irf8)st95 (Shiau et al, 2015); Tg(elavl3:MA-mKate2)mps1 (Tsata et al, 2021). The Tg(her4.3:GFP-F)mps9 transgenic zebrafish line has been previously described by Kolb et al (2023) and was established using the DNA constructs and methodology described below. If necessary, larvae were treated with 100 M Nphenylthiourea (PTU) to inhibit melanogenesis. All chemicals were supplied by Sigma-Aldrich unless otherwise stated.

Generation of Tg(her4.3:GFP-F) transgenic fish

To create the donor plasmid for generation of her4.3:GFP-F transgenic zebrafish, the sequence coding for the membrane-localised GFP (EGFP fused to farnesylation signal from c-HA-Ras) was amplified from the pEGFP-F vector (Clonetech) using oligos 5′-TTATTTATCGATCCACCATGGTGAGCAAGGGC-3′ and 5′-TTTATTATCGATTCAGGAGAGCACACACTTGCAGCT-3′ and cloned downstream of the her4.3 (previously known as her4.1) zebrafish promoter (Yeo et al, 2007). Transgenic fish were established by injection of 40 pg of the donor plasmid together with mRNA of the Tol2 transposase into one-cell embryos (Suster et al, 2009).

gRNA injections

The gRNAs were injected into the yolk at the one-cell stage of development. The injection mix was prepared on the morning of injections. The mix consisted of 1 liter Cas9 protein (M0369M; BioLabs), 1 liter Fast Green FCF dye (235345-9; Sigma-Aldrich), 1 liter 250 ng/liter SygRNA-tracr (TRACRRNA05N; Sigma-Aldrich), 1 liter gRNA, and 1 liter nuclease-free water. When two gRNAs were co-injected, the nuclease-free water was substituted with the second gRNA. After mixing gRNAs and tracr (and water if using), the mixture was heated to 95 degrees for 5 min and then kept on ice for 20 min. After this, the Cas9 and dye are added, and the mixture is again heated to 27 degrees for 10 min. For every experiment, two injection mixtures were made, one with the gRNA of interest and one with a control gRNA (5′-TTACCTCAGTTACAATTTAT-3′). lcp1 was targeted with a gRNA (5′-GAACCCGGUACCCCGGCAGA-3′) as previously published (Keatinge et al, 2021).

Footnotes

  • ↵* Catherina G Becker and Thomas Becker are equal senior authors

  • Received November 12, 2024.
  • Accepted November 12, 2024.
  • © 2024 El-Daher et al.
Creative Commons logoCreative Commons logohttps://creativecommons.org/licenses/by/4.0/

This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

References

    1. Arenzana FJ,
    2. Santos-Ledo A,
    3. Porteros A,
    4. Aijón J,
    5. Velasco A,
    6. Lara JM,
    7. Arévalo R
    (2011) Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan. Int J Dev Neurosci 29: 441–449. doi:10.1016/j.ijdevneu.2011.02.008
    OpenUrlCrossRef
    1. Ayata P,
    2. Schaefer A
    (2020) Innate sensing of mechanical properties of brain tissue by microglia. Curr Opin Immunol 62: 123–130. doi:10.1016/j.coi.2020.01.003
    OpenUrlCrossRef
    1. Baraban M,
    2. Gordillo Pi C,
    3. Bonnet I,
    4. Gilles JF,
    5. Lejeune C,
    6. Cabrera M,
    7. Tep F,
    8. Breau MA
    (2023) Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Dev Cell 58: 361–375.e5. doi:10.1016/j.devcel.2023.02.001
    OpenUrlCrossRef
    1. Becker T,
    2. Becker CG
    (2001) Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 433: 131–147. doi:10.1002/cne.1131
    OpenUrlCrossRefPubMed
    1. Bollmann L,
    2. Koser DE,
    3. Shahapure R,
    4. Gautier HOB,
    5. Holzapfel GA,
    6. Scarcelli G,
    7. Gather MC,
    8. Ulbricht E,
    9. Franze K
    (2015) Microglia mechanics: Immune activation alters traction forces and durotaxis. Front Cell Neurosci 9: 363. doi:10.3389/fncel.2015.00363
    OpenUrlCrossRefPubMed
    1. Brennan FH,
    2. Li Y,
    3. Wang C,
    4. Ma A,
    5. Guo Q,
    6. Li Y,
    7. Pukos N,
    8. Campbell WA,
    9. Witcher KG,
    10. Guan Z, et al.
    (2022) Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 13: 4096. doi:10.1038/s41467-022-31797-0
    OpenUrlCrossRefPubMed
    1. Chia K,
    2. Mazzolini J,
    3. Mione M,
    4. Sieger D
    (2018) Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain. Elife 7: e31918. doi:10.7554/eLife.31918
    OpenUrlCrossRefPubMed
    1. Choi HMT,
    2. Schwarzkopf M,
    3. Fornace ME,
    4. Acharya A,
    5. Artavanis G,
    6. Stegmaier J,
    7. Cunha A,
    8. Pierce NA
    (2018) Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 145: dev165753. doi:10.1242/dev.165753
    OpenUrlAbstract/FREE Full Text
    1. Cole JH,
    2. Jolly A,
    3. de Simoni S,
    4. Bourke N,
    5. Patel MC,
    6. Scott G,
    7. Sharp DJ
    (2018) Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury. Brain 141: 822–836. doi:10.1093/brain/awx354
    OpenUrlCrossRefPubMed
  1. ↵
    1. Compagnon J,
    2. Barone V,
    3. Rajshekar S,
    4. Kottmeier R,
    5. Pranjic-Ferscha K,
    6. Behrndt M,
    7. Heisenberg CP
    (2014) The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ. Dev Cell 31: 774–783. doi:10.1016/j.devcel.2014.11.003
    OpenUrlCrossRefPubMed
    1. Cooper SR,
    2. Emond MR,
    3. Duy PQ,
    4. Liebau BG,
    5. Wolman MA,
    6. Jontes JD
    (2015) Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol 211: 807–814. doi:10.1083/jcb.201507108
    OpenUrlAbstract/FREE Full Text
    1. Crilly S,
    2. Njegic A,
    3. Laurie SE,
    4. Fotiou E,
    5. Hudson G,
    6. Barrington J,
    7. Webb K,
    8. Young HL,
    9. Badrock AP,
    10. Hurlstone A, et al.
    (2018) Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res 7: 1617. doi:10.12688/f1000research.16473.2
    OpenUrlCrossRef
    1. Dewan MC,
    2. Rattani A,
    3. Gupta S,
    4. Baticulon RE,
    5. Hung YC,
    6. Punchak M,
    7. Agrawal A,
    8. Adeleye AO,
    9. Shrime MG,
    10. Rubiano AM, et al.
    (2019) Estimating the global incidence of traumatic brain injury. J Neurosurg 130: 1080–1097. doi:10.3171/2017.10.JNS17352
    OpenUrlCrossRefPubMed
    1. Dieterich P,
    2. Klages R,
    3. Preuss R,
    4. Schwab A
    (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105: 459–463. doi:10.1073/pnas.0707603105
    OpenUrlAbstract/FREE Full Text
  2. ↵
    1. Ellett F,
    2. Pase L,
    3. Hayman JW,
    4. Andrianopoulos A,
    5. Lieschke GJ
    (2011) Mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117: 49–56. doi:10.1182/blood-2010-10-314120
    OpenUrlCrossRef
    1. Gao J,
    2. Nakamura F
    (2022) Actin-associated proteins and small molecules targeting the actin cytoskeleton. Int J Mol Sci 23: 2118. doi:10.3390/ijms23042118
    OpenUrlCrossRef
    1. Ghaffarizadeh A,
    2. Heiland R,
    3. Friedman SH,
    4. Mumenthaler SM,
    5. Macklin P
    (2018) PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14: e1005991. doi:10.1371/journal.pcbi.1005991
    OpenUrlCrossRefPubMed
    1. Gorelik R,
    2. Gautreau A
    (2014) Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 9: 1931–1943. doi:10.1038/nprot.2014.131
    OpenUrlCrossRefPubMed
    1. Grupp L,
    2. Wolburg H,
    3. Mack AF
    (2010) Astroglial structures in the zebrafish brain. J Comp Neurol 518: 4277–4287. doi:10.1002/cne.22481
    OpenUrlCrossRefPubMed
    1. Guan B,
    2. Anderson DB,
    3. Chen L,
    4. Feng S,
    5. Zhou H
    (2023) Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: A systematic analysis for the global burden of disease study 2019. BMJ Open 13: e075049. doi:10.1136/bmjopen-2023-075049
    OpenUrlAbstract/FREE Full Text
    1. Hellal F,
    2. Hurtado A,
    3. Ruschel J,
    4. Flynn KC,
    5. Laskowski CJ,
    6. Umlauf M,
    7. Kapitein LC,
    8. Strikis D,
    9. Lemmon V,
    10. Bixby J, et al.
    (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331: 928–931. doi:10.1126/science.1201148
    OpenUrlAbstract/FREE Full Text
    1. Herzog C,
    2. Pons Garcia L,
    3. Keatinge M,
    4. Greenald D,
    5. Moritz C,
    6. Peri F,
    7. Herrgen L
    (2019) Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development 146: dev174698. doi:10.1242/dev.174698
    OpenUrlAbstract/FREE Full Text
    1. Ibrahim S,
    2. Hu W,
    3. Wang X,
    4. Gao X,
    5. He C,
    6. Chen J
    (2016) Traumatic brain injury causes aberrant migration of adult-born neurons in the Hippocampus. Sci Rep 6: 21793. doi:10.1038/srep21793
    OpenUrlCrossRefPubMed
    1. Jurisch-Yaksi N,
    2. Yaksi E,
    3. Kizil C
    (2020) Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 68: 2451–2470. doi:10.1002/glia.23849
    OpenUrlCrossRefPubMed
  3. ↵
    1. Keatinge M,
    2. Tsarouchas TM,
    3. Munir T,
    4. Porter NJ,
    5. Larraz J,
    6. Gianni D,
    7. Tsai HH,
    8. Becker CG,
    9. Lyons DA,
    10. Becker T
    (2021) CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genet 17: e1009515. doi:10.1371/journal.pgen.1009515
    OpenUrlCrossRefPubMed
  4. ↵
    1. Kolb J,
    2. Tsata V,
    3. John N,
    4. Kim K,
    5. Möckel C,
    6. Rosso G,
    7. Kurbel V,
    8. Parmar A,
    9. Sharma G,
    10. Karandasheva K, et al.
    (2023) Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat Commun 14: 6814. doi:10.1038/s41467-023-42339-7
    OpenUrlCrossRefPubMed
    1. Lalancette-Hebert M,
    2. Gowing G,
    3. Simard A,
    4. Weng YC,
    5. Kriz J
    (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27: 2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007
    OpenUrlAbstract/FREE Full Text
    1. Linehan JB,
    2. Lucas Zepeda J,
    3. Mitchell TA,
    4. LeClair EE
    (2022) Follow that cell: Leukocyte migration in l-plastin mutant zebrafish. Cytoskeleton 79: 26–37. doi:10.1002/cm.21717
    OpenUrlCrossRef
    1. Liu C,
    2. Wu C,
    3. Yang Q,
    4. Gao J,
    5. Li L,
    6. Yang D,
    7. Luo L
    (2016) Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44: 1162–1176. doi:10.1016/j.immuni.2016.03.008
    OpenUrlCrossRefPubMed
    1. Luisier F,
    2. Vonesch C,
    3. Blu T,
    4. Unser M
    (2010) Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process 90: 415–427. doi:10.1016/j.sigpro.2009.07.009
    OpenUrlCrossRef
    1. Mao Y,
    2. Tournier AL,
    3. Hoppe A,
    4. Kester L,
    5. Thompson BJ,
    6. Tapon N
    (2013) Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J 32: 2790–2803. doi:10.1038/emboj.2013.197
    OpenUrlAbstract/FREE Full Text
    1. Marz M,
    2. Schmidt R,
    3. Rastegar S,
    4. Strahle U
    (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240: 2221–2231. doi:10.1002/dvdy.22710
    OpenUrlCrossRefPubMed
    1. Mazzolini J,
    2. Le Clerc S,
    3. Morisse G,
    4. Coulonges C,
    5. Kuil LE,
    6. van Ham TJ,
    7. Zagury JF,
    8. Sieger D
    (2020) Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 68: 298–315. doi:10.1002/glia.23717
    OpenUrlCrossRefPubMed
    1. Meijering E,
    2. Dzyubachyk O,
    3. Smal I
    (2012) Methods for cell and particle tracking. Methods Enzymol 504: 183–200. doi:10.1016/B978-0-12-391857-4.00009-4
    OpenUrlCrossRefPubMed
    1. Ollion J,
    2. Cochennec J,
    3. Loll F,
    4. Escude C,
    5. Boudier T
    (2013) Tango: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29: 1840–1841. doi:10.1093/bioinformatics/btt276
    OpenUrlCrossRefPubMed
    1. Parslow A,
    2. Cardona A,
    3. Bryson-Richardson RJ
    (2014) Sample drift correction following 4d confocal time-lapse imaging. J Vis Exp 12: 51086. doi:10.3791/51086
    OpenUrlCrossRef
  5. ↵
    1. Pauls S,
    2. Geldmacher-Voss B,
    3. Campos-Ortega JA
    (2001) A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev Genes Evol 211: 603–610. doi:10.1007/s00427-001-0196-x
    OpenUrlCrossRefPubMed
  6. ↵
    1. Peri F,
    2. Nüsslein-Volhard C
    (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133: 916–927. doi:10.1016/j.cell.2008.04.037
    OpenUrlCrossRefPubMed
    1. Rovira M,
    2. Miserocchi M,
    3. Montanari A,
    4. Hammou L,
    5. Chomette L,
    6. Pozo J,
    7. Imbault V,
    8. Bisteau X,
    9. Wittamer V
    (2023) Zebrafish galectin 3 binding protein is the target antigen of the microglial 4c4 monoclonal antibody. Dev Dyn 252: 400–414. doi:10.1002/dvdy.549
    OpenUrlCrossRef
    1. Ruschel J,
    2. Hellal F,
    3. Flynn KC,
    4. Dupraz S,
    5. Elliott DA,
    6. Tedeschi A,
    7. Bates M,
    8. Sliwinski C,
    9. Brook G,
    10. Dobrindt K, et al.
    (2015) Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348: 347–352. doi:10.1126/science.aaa2958
    OpenUrlAbstract/FREE Full Text
    1. Sage D,
    2. Donati L,
    3. Soulez F,
    4. Fortun D,
    5. Schmit G,
    6. Seitz A,
    7. Guiet R,
    8. Vonesch C,
    9. Unser M
    (2017) DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115: 28–41. doi:10.1016/j.ymeth.2016.12.015
    OpenUrlCrossRefPubMed
    1. Sage D,
    2. Unser M
    (2001) Easy Java programming for teaching image processing. In Proceedings of the 2001 IEEE International Conference on Image Processing (ICIP’01), Vol. 3, pp 298–301. Thessaloniki: IEEE. doi:10.1109/ICIP.2001.958110
    OpenUrlCrossRef
    1. Schindelin J,
    2. Arganda-Carreras I,
    3. Frise E,
    4. Kaynig V,
    5. Longair M,
    6. Pietzsch T,
    7. Preibisch S,
    8. Rueden C,
    9. Saalfeld S,
    10. Schmid B, et al.
    (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9: 676–682. doi:10.1038/nmeth.2019
    OpenUrlCrossRefPubMed
  7. ↵
    1. Shiau CE,
    2. Kaufman Z,
    3. Meireles AM,
    4. Talbot WS
    (2015) Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 10: e0117513. doi:10.1371/journal.pone.0117513
    OpenUrlCrossRefPubMed
    1. So WY,
    2. Johnson B,
    3. Gordon PB,
    4. Bishop KS,
    5. Gong H,
    6. Burr HA,
    7. Staunton JR,
    8. Handler C,
    9. Sood R,
    10. Scarcelli G, et al.
    (2024) Macrophage mediated mesoscale brain mechanical homeostasis mechanically imaged via optical tweezers and brillouin microscopy in vivo. BioRxiv. doi:10.1101/2023.12.27.573380 (Preprint posted March 06, 2024).
    OpenUrlCrossRef
    1. Stachowiak MR,
    2. O’Shaughnessy B
    (2009) Recoil after severing reveals stress fiber contraction mechanisms. Biophys J 97: 462–471. doi:10.1016/j.bpj.2009.04.051
    OpenUrlCrossRefPubMed
    1. Steinwachs J,
    2. Metzner C,
    3. Skodzek K,
    4. Lang N,
    5. Thievessen I,
    6. Mark C,
    7. Munster S,
    8. Aifantis KE,
    9. Fabry B
    (2016) Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods 13: 171–176. doi:10.1038/nmeth.3685
    OpenUrlCrossRefPubMed
  8. ↵
    1. Suster ML,
    2. Kikuta H,
    3. Urasaki A,
    4. Asakawa K,
    5. Kawakami K
    (2009) Transgenesis in zebrafish with the Tol2 transposon system. Methods Mol Biol 561: 41–63. doi:10.1007/978-1-60327-019-9_3
    OpenUrlCrossRefPubMed
    1. Todd BP,
    2. Chimenti MS,
    3. Luo Z,
    4. Ferguson PJ,
    5. Bassuk AG,
    6. Newell EA
    (2021) Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type i interferon response. J Neuroinflammation 18: 151. doi:10.1186/s12974-02102197-w
    OpenUrlCrossRefPubMed
    1. Tsarouchas TM,
    2. Wehner D,
    3. Cavone L,
    4. Munir T,
    5. Keatinge M,
    6. Lambertus M,
    7. Underhill A,
    8. Barrett T,
    9. Kassapis E,
    10. Ogryzko N, et al.
    (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun 9: 4670. doi:10.1038/s41467018-07036-w
    OpenUrlCrossRefPubMed
  9. ↵
    1. Tsata V,
    2. Mollmert S,
    3. Schweitzer C,
    4. Kolb J,
    5. Mockel C,
    6. Bohm B,
    7. Rosso G,
    8. Lange C,
    9. Lesche M,
    10. Hammer J, et al.
    (2021) A switch in pdgfrb+ cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 56: 509–524.e9. doi:10.1016/j.devcel.2020.12.009
    OpenUrlCrossRefPubMed
    1. Van Audenhove I,
    2. Denert M,
    3. Boucherie C,
    4. Pieters L,
    5. Cornelissen M,
    6. Gettemans J
    (2016) Fascin rigidity and l-plastin flexibility cooperate in cancer cell invadopodia and filopodia. J Biol Chem 291: 9148–9160. doi:10.1074/jbc.M115.706937
    OpenUrlAbstract/FREE Full Text
    1. Vandestadt C,
    2. Vanwalleghem GC,
    3. Khabooshan MA,
    4. Douek AM,
    5. Castillo HA,
    6. Li M,
    7. Schulze K,
    8. Don E,
    9. Stamatis SA,
    10. Ratnadiwakara M, et al.
    (2021) RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 56: 2364–2380.e8. doi:10.1016/j.devcel.2021.07.021
    OpenUrlCrossRefPubMed
    1. Var SR,
    2. Byrd-Jacobs CA
    (2020) Role of macrophages and microglia in zebrafish regeneration. Int J Mol Sci 21: 4768. doi:10.3390/ijms21134768
    OpenUrlCrossRef
    1. Várkuti BH,
    2. Képiró Mlós,
    3. Horváth IÁ,
    4. Végner L,
    5. Ráti S,
    6. Zsigmond Á,
    7. Hegyi G,
    8. Lenkei Z,
    9. Varga M,
    10. Málnási-Csizmadia A
    (2016) A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep 6: 26141. doi:10.1038/srep26141
    OpenUrlCrossRef
    1. Ventura G,
    2. Amiri A,
    3. Thiagarajan R,
    4. Tolonen M,
    5. Doostmohammadi A,
    6. Sedzinski J
    (2022) Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo. Nat Commun 13: 6423. doi:10.1038/s41467-022-34165-0
    OpenUrlCrossRef
    1. Wanner IB,
    2. Anderson MA,
    3. Song B,
    4. Levine J,
    5. Fernandez A,
    6. Gray-Thompson Z,
    7. Ao Y,
    8. Sofroniew MV
    (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33: 12870–12886. doi:10.1523/JNEUROSCI.2121-13.2013
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Westerfield M
    (2000) A Guide for the Laboratory Use of Zebrafish (Danio rerio). In The Zebrafish Book. Eugene: University of Oregon Press.
  11. ↵
    1. Yeo SY,
    2. Kim MJ,
    3. Kim HS,
    4. Huh TL,
    5. Chitnis AB
    (2007) Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos. Dev Biol 301: 555–567. doi:10.1016/j.ydbio.2006.10.020
    OpenUrlCrossRefPubMed
    1. Zambusi A,
    2. Ninkovic J
    (2020) Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World J Stem Cells 12: 8–24. doi:10.4252/wjsc.v12.i1.8
    OpenUrlCrossRefPubMed
    1. Zambusi A,
    2. Novoselc KT,
    3. Hutten S,
    4. Kalpazidou S,
    5. Koupourtidou C,
    6. Schieweck R,
    7. Aschenbroich S,
    8. Silva L,
    9. Yazgili AS,
    10. van Bebber F, et al.
    (2022) TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat Neurosci 25: 1608–1625. doi:10.1038/s41593-022-01199-y
    OpenUrlCrossRefPubMed
    1. Zhou X,
    2. Wahane S,
    3. Friedl MS,
    4. Kluge M,
    5. Friedel CC,
    6. Avrampou K,
    7. Zachariou V,
    8. Guo L,
    9. Zhang B,
    10. He X, et al.
    (2020) Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 23: 337–350. doi:10.1038/s41593-020-0597-7
    OpenUrlCrossRefPubMed
    1. Zou D,
    2. Hu W,
    3. Qin J,
    4. Wei Z,
    5. Wang D,
    6. Li L
    (2021) Rapid orderly migration of neutrophils after traumatic brain injury depends on MMP9/13. Biochem Biophys Res Commun 579: 161–167. doi:10.1016/j.bbrc.2021.09.044
    OpenUrlCrossRef
    1. Zulazmi NA,
    2. Arulsamy A,
    3. Ali I,
    4. Zainal Abidin SA,
    5. Othman I,
    6. Shaikh MF
    (2021) The utilization of small non-mammals in traumatic brain injury research: A systematic review. CNS Neurosci Ther 27: 381–402. doi:10.1111/cns.13590
    OpenUrlCrossRef
PreviousNext
Back to top
Download PDF
Email Article

Thank you for your interest in spreading the word on Life Science Alliance.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Correction: Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae
(Your Name) has sent you a message from Life Science Alliance
(Your Name) thought you would like to see the Life Science Alliance web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Correction: Microglia mechanically close brain wounds El-Daher et al.
Francois El-Daher, Stephen J Enos, Louisa K Drake, Daniel Wehner, Markus Westphal, Nicola J Porter, Catherina G Becker, Thomas Becker
Life Science Alliance Nov 2024, 8 (2) e202403129; DOI: 10.26508/lsa.202403129

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Share
Correction: Microglia mechanically close brain wounds El-Daher et al.
Francois El-Daher, Stephen J Enos, Louisa K Drake, Daniel Wehner, Markus Westphal, Nicola J Porter, Catherina G Becker, Thomas Becker
Life Science Alliance Nov 2024, 8 (2) e202403129; DOI: 10.26508/lsa.202403129
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
Issue Cover

In this Issue

Volume 8, No. 2
February 2025
  • Table of Contents
  • Cover (PDF)
  • About the Cover
  • Masthead (PDF)
Advertisement

Jump to section

  • Article
    • Materials and Methods
    • Footnotes
    • References
  • Info
  • Metrics
  • PDF

Subjects

  • Neuroscience

Related Articles

  • El-Daher, F., Enos, S. J., Drake, L. K., Wehner, D., Westphal, M., Porter, N. J., Becker, C. G., & Becker, T. (2025). Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Science Alliance, 8(1), e202403052. Accessed May 29, 2025. https://doi.org/10.26508/lsa.202403052.

Cited By...

  • No citing articles found.
  • Google Scholar

More in this TOC Section

  • Correction: Decoding the molecular profile of microglia in PWH and ART Schlachetzki et al.
  • Correction: An FFPE-curated CMS classifier for colorectal cancer tissues de Back et al.
Show more Correction

Similar Articles

EMBO Press LogoRockefeller University Press LogoCold Spring Harbor Logo

Content

  • Home
  • Newest Articles
  • Current Issue
  • Archive
  • Subject Collections

For Authors

  • Submit a Manuscript
  • Author Guidelines
  • License, copyright, Fee

Other Services

  • Alerts
  • Bluesky
  • X/Twitter
  • RSS Feeds

More Information

  • Editors & Staff
  • Reviewer Guidelines
  • Feedback
  • Licensing and Reuse
  • Privacy Policy

ISSN: 2575-1077
© 2025 Life Science Alliance LLC

Life Science Alliance is registered as a trademark in the U.S. Patent and Trade Mark Office and in the European Union Intellectual Property Office.