Skip to main content
Log in

An exact solution of a one-dimensional asymmetric exclusion model with open boundaries

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A simple asymmetric exclusion model with open boundaries is solved exactly in one dimension. The exact solution is obtained by deriving a recursion relation for the steady state: if the steady state is known for all system sizes less thanN, then our equation (8) gives the steady state for sizeN. Using this recursion, we obtain closed expressions (48) for the average occupations of all sites. The results are compared to the predictions of a mean field theory. In particular, for infinitely large systems, the effect of the boundary decays as the distance to the power −1/2 instead of the inverse of the distance, as predicted by the mean field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Liggett,Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  2. R. Kutner,Phys. Lett. A 81:239 (1981).

    Google Scholar 

  3. H. van Beijeren, K. W. Kehr, and R. Kutner,Phys. Rev. B 28:5711 (1983).

    Google Scholar 

  4. P. A. Ferrari,Ann. Prob. 14:1277 (1986).

    Google Scholar 

  5. A. De Masi and P. Ferrari,J. Stat. Phys. 36:81 (1984).

    Google Scholar 

  6. D. Kandel and E. Domany,J. Stat. Phys. 58:685 (1990); D. Kandel, E. Domany, and B. Nienhuis,J. Phys. A 23:L755 (1990).

    Google Scholar 

  7. J. P. Marchand and P. A. Martin,J. Stat. Phys. 44:491 (1986).

    Google Scholar 

  8. D. Dhar,Phase Transitions 9:51 (1987).

    Google Scholar 

  9. J. Krug and H. Spohn, inSolids far from Equilibrium: Growth, Morphology and Defects, C. Godreche, ed. (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  10. M. Kardar, G. Parisi, and Y. Zhang,Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  11. J. Krug,Phys. Rev. Lett. 67:1882 (1991).

    Google Scholar 

  12. D. E. Wolf and L. H. Tang,Phys. Rev. Lett. 65:1591 (1990).

    Google Scholar 

  13. D. Kandel and D. Mukamel,Europhys. Lett. (1992), in press.

  14. J. Cook and D. E. Wolf,J. Phys. A 24:L351 (1991).

    Google Scholar 

  15. H. Rost,Z. Wahrsch. Verw. Geb. 58:41 (1981).

    Google Scholar 

  16. A. Galves, C. Kipnis, C. Macchioro, and E. Presutti,Commun. Math. Phys. 81:127 (1981).

    Google Scholar 

  17. B. Derrida, J. L. Lebowitz, E. R. Speer, and H. Spohn,Phys. Rev. Lett. 67:165 (1991);J. Phys. A 24:4805 (1991).

    Google Scholar 

  18. S. A. Janowsky and J. L. Lebowitz,Phys. Rev. A 45:618 (1992).

    Google Scholar 

  19. L. H. Gwa and H. Spohn,Phys. Rev. Lett. 68:725 (1992).

    Google Scholar 

  20. H. van Beijeren, R. Kutner, and H. Spohn,Phys. Rev. Lett. 54:2026 (1985).

    Google Scholar 

  21. J. Krug, Private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Domany, E. & Mukamel, D. An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J Stat Phys 69, 667–687 (1992). https://doi.org/10.1007/BF01050430

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01050430

Key words

Navigation