Abstract
In this paper, we analyze the steady state of the asymmetric simple exclusion process with open boundaries and second class particles by deforming it through the introduction of spectral parameters. The (unnormalized) probabilities of the particle configurations get promoted to Laurent polynomials in the spectral parameters and are constructed in terms of non-symmetric Koornwinder polynomials. In particular, we show that the partition function coincides with a symmetric Macdonald–Koornwinder polynomial. As an outcome, we compute the steady current and the average density of first class particles.
Similar content being viewed by others
References
Al-Salam, W.A., Chihara, T.S.: Convolutions of orthonormal polynomials. SIAM J. Math. Anal. 7(1), 16–28 (1976)
Askey, R., Wilson, J.A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, vol. 319. American Mathematical Society, Providence, Rhode Island, USA (1985)
Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. Mathe. Theor. 40(46), R333 (2007)
Cantini, L.: qkz equations and ground state of the o(1) loop model with open boundary conditions. arXiv preprint arXiv:0903.5050 (2009)
Cantini, L.: Inhomogenous Multi-species TASEP on a Ring with Spectral Parameters. arXiv:1602.07921 (to appear)
Cantini, L., de Gier, J., Wheeler, M.: Matrix Product Formula for Macdonald Polynomials. J. Phys. A. Math. Theor. 48(38), 384001 (2015)
Cherednik, I.V.: Factorizing particles on a half-line and root systems. Theor. Math. Phys. 61(1), 977–983 (1984)
Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep.Prog. Phys. 74(11), 116601 (2011)
Corteel, S., Stanley, R., Stanton, D., Williams, L.K.: Formulae for Askey–Wilson moments and enumeration of staircase tableaux. Trans. Am. Math. Soc. 364(11), 6009–6037 (2012)
Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process. Adv. Appl. Math. 39(3), 293–310 (2007)
Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials. Duke Math. J. 159(3), 385–415 (2011)
Corteel, S., Williams, L.K.: Macdonald–Koornwinder Moments and the Two-Species Exclusion Process. arXiv preprint arXiv:1505.00843 (2015)
Crampe, N., Mallick, K., Ragoucy, E., Vanicat, M.: Open Two-Species Exclusion Processes with Integrable Boundaries. J. Phys. A. Math. Theor. 48(17), 175002 (2014)
Crampe, N., Ragoucy, E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. Theory Exp. 2014(11), P11032 (2014)
Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301(1), 65–83 (1998)
Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 2007(07), P07023 (2007)
Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26(7), 1493 (1993)
Di Francesco, P., Zinn-Justin, P.: Around the Razumov–Stroganov conjecture: proof of a multi-parameter sum rule. J. Comb. 12(1), R6 (2005)
Doikou, A., Evangelisti, S., Feverati, G., Karaiskos, N.: Introduction to quantum integrability. Int. J. Mod. Phys. A 25(17), 3307–3351 (2010)
Duchi, E., Schaeffer, G.: A combinatorial approach to jumping particles. J. Comb. Theory Ser. A 110(1), 1–29 (2005)
Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 96. Cambridge University Press, Cambridge (2004)
Humphreys, J.E.: Reflection Groups and Coxeter Groups, vol. 29. Cambridge University Press, Cambridge (1992)
Kasatani, M.: Boundary quantum Knizhnik–Zamolodchikov equation. In: Feigin, B., Jimbo, M., Okado, M. (eds.) New Trends in Quantum Integrable Systems, pp 157–171. World Scientific, Singapore
Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer (2010)
Koornwinder, T.H.: Askey–Wilson polynomials for root systems of type BC. Contemp. Math 138, 189–204 (1992)
Lazarescu, A., Pasquier, V.: Bethe Ansatz and q-operator for the open ASEP. J. Phys. A: Math. Theor. 47(29), 295202 (2014)
Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)
MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)
Mimachi, K.: A duality of Macdonald–Koornwinder polynomials and its application to integral representations. Duke Math. J. 107(2), 265–281 (2001)
Noumi, M.: Macdonald–Koornwinder polynomials and affine hecke rings. Surikaisekikenkyusho Kokyuroku 919, 44–55 (1995)
Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. 150, 267–282 (1999)
Sandow, S.: Partially asymmetric exclusion process with open boundaries. Phys. Rev. E 50(4), 2660 (1994)
Shigechi, K.: Laurent Polynomial Solutions of the Boundary Quantum Knizhnik–Zamolodchikov Equation. arXiv preprint arXiv:1412.7797 (2014)
Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A: Math. Gen. 21(10):2375 (1988)
Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)
Stokman, J.V.: Koornwinder polynomials and affine Hecke algebras. Int. Math. Res. Not. 2000(19), 1005–1042 (2000)
Stokman, J.V., Vlaar, B.: Koornwinder polynomials and the xxz spin chain. J. Approx. Theory 197, 69–100 (2015)
Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35(2), 398–407 (2008)
Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A: Math. Gen. 37(18), 4985 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean-Michel Maillet.
The work of LC is partially supported by CNRS through a “Chaire d’excellence.” It is a pleasure to thank Jan de Gier for collaboration at an early stage of this project and the Department of Mathematics and Statistics of the University of Melbourne for kind hospitality.
Rights and permissions
About this article
Cite this article
Cantini, L. Asymmetric Simple Exclusion Process with Open Boundaries and Koornwinder Polynomials. Ann. Henri Poincaré 18, 1121–1151 (2017). https://doi.org/10.1007/s00023-016-0540-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-016-0540-3