Skip to main content
Log in

Asymmetric Simple Exclusion Process with Open Boundaries and Koornwinder Polynomials

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we analyze the steady state of the asymmetric simple exclusion process with open boundaries and second class particles by deforming it through the introduction of spectral parameters. The (unnormalized) probabilities of the particle configurations get promoted to Laurent polynomials in the spectral parameters and are constructed in terms of non-symmetric Koornwinder polynomials. In particular, we show that the partition function coincides with a symmetric Macdonald–Koornwinder polynomial. As an outcome, we compute the steady current and the average density of first class particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Salam, W.A., Chihara, T.S.: Convolutions of orthonormal polynomials. SIAM J. Math. Anal. 7(1), 16–28 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Askey, R., Wilson, J.A.: Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, vol. 319. American Mathematical Society, Providence, Rhode Island, USA (1985)

  3. Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. Mathe. Theor. 40(46), R333 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Cantini, L.: qkz equations and ground state of the o(1) loop model with open boundary conditions. arXiv preprint arXiv:0903.5050 (2009)

  5. Cantini, L.: Inhomogenous Multi-species TASEP on a Ring with Spectral Parameters. arXiv:1602.07921 (to appear)

  6. Cantini, L., de Gier, J., Wheeler, M.: Matrix Product Formula for Macdonald Polynomials. J. Phys. A. Math. Theor. 48(38), 384001 (2015)

  7. Cherednik, I.V.: Factorizing particles on a half-line and root systems. Theor. Math. Phys. 61(1), 977–983 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep.Prog. Phys. 74(11), 116601 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Corteel, S., Stanley, R., Stanton, D., Williams, L.K.: Formulae for Askey–Wilson moments and enumeration of staircase tableaux. Trans. Am. Math. Soc. 364(11), 6009–6037 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process. Adv. Appl. Math. 39(3), 293–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corteel, S., Williams, L.K.: Tableaux combinatorics for the asymmetric exclusion process and Askey–Wilson polynomials. Duke Math. J. 159(3), 385–415 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Corteel, S., Williams, L.K.: Macdonald–Koornwinder Moments and the Two-Species Exclusion Process. arXiv preprint arXiv:1505.00843 (2015)

  13. Crampe, N., Mallick, K., Ragoucy, E., Vanicat, M.: Open Two-Species Exclusion Processes with Integrable Boundaries. J. Phys. A. Math. Theor. 48(17), 175002 (2014)

  14. Crampe, N., Ragoucy, E., Vanicat, M.: Integrable approach to simple exclusion processes with boundaries. Review and progress. J. Stat. Mech. Theory Exp. 2014(11), P11032 (2014)

    Article  MathSciNet  Google Scholar 

  15. Derrida, B.: An exactly soluble non-equilibrium system: the asymmetric simple exclusion process. Phys. Rep. 301(1), 65–83 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Derrida, B.: Non-equilibrium steady states: fluctuations and large deviations of the density and of the current. J. Stat. Mech. Theory Exp. 2007(07), P07023 (2007)

    Article  MathSciNet  Google Scholar 

  17. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen. 26(7), 1493 (1993)

    Article  ADS  MATH  Google Scholar 

  18. Di Francesco, P., Zinn-Justin, P.: Around the Razumov–Stroganov conjecture: proof of a multi-parameter sum rule. J. Comb. 12(1), R6 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Doikou, A., Evangelisti, S., Feverati, G., Karaiskos, N.: Introduction to quantum integrability. Int. J. Mod. Phys. A 25(17), 3307–3351 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Duchi, E., Schaeffer, G.: A combinatorial approach to jumping particles. J. Comb. Theory Ser. A 110(1), 1–29 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gasper, G., Rahman, M.: Basic Hypergeometric Series, vol. 96. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Humphreys, J.E.: Reflection Groups and Coxeter Groups, vol. 29. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  23. Kasatani, M.: Boundary quantum Knizhnik–Zamolodchikov equation. In: Feigin, B., Jimbo, M., Okado, M. (eds.) New Trends in Quantum Integrable Systems, pp 157–171. World Scientific, Singapore

  24. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer (2010)

  25. Koornwinder, T.H.: Askey–Wilson polynomials for root systems of type BC. Contemp. Math 138, 189–204 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazarescu, A., Pasquier, V.: Bethe Ansatz and q-operator for the open ASEP. J. Phys. A: Math. Theor. 47(29), 295202 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Article  Google Scholar 

  29. Mimachi, K.: A duality of Macdonald–Koornwinder polynomials and its application to integral representations. Duke Math. J. 107(2), 265–281 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Noumi, M.: Macdonald–Koornwinder polynomials and affine hecke rings. Surikaisekikenkyusho Kokyuroku 919, 44–55 (1995)

    MathSciNet  MATH  Google Scholar 

  31. Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. 150, 267–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sandow, S.: Partially asymmetric exclusion process with open boundaries. Phys. Rev. E 50(4), 2660 (1994)

    Article  ADS  Google Scholar 

  33. Shigechi, K.: Laurent Polynomial Solutions of the Boundary Quantum Knizhnik–Zamolodchikov Equation. arXiv preprint arXiv:1412.7797 (2014)

  34. Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A: Math. Gen. 21(10):2375 (1988)

  35. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5(2), 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stokman, J.V.: Koornwinder polynomials and affine Hecke algebras. Int. Math. Res. Not. 2000(19), 1005–1042 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stokman, J.V., Vlaar, B.: Koornwinder polynomials and the xxz spin chain. J. Approx. Theory 197, 69–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35(2), 398–407 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A: Math. Gen. 37(18), 4985 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Cantini.

Additional information

Communicated by Jean-Michel Maillet.

The work of LC is partially supported by CNRS through a “Chaire d’excellence.” It is a pleasure to thank Jan de Gier for collaboration at an early stage of this project and the Department of Mathematics and Statistics of the University of Melbourne for kind hospitality.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantini, L. Asymmetric Simple Exclusion Process with Open Boundaries and Koornwinder Polynomials. Ann. Henri Poincaré 18, 1121–1151 (2017). https://doi.org/10.1007/s00023-016-0540-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0540-3

Navigation