Skip to main content
Log in

Quasi-static limit for the asymmetric simple exclusion

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We study the one-dimensional asymmetric simple exclusion process on the lattice \(\{1, \dots ,N\}\) with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale \(N^{-a}\) with \(a>0\). We prove that at the time scale \(N^{1+a}\) the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the “Liggett boundaries” that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy–entropy flux pairs and a coupling argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahadoran, C.: Hydrodynamics and hydrostatics for a class of asymmetric particle systems with open boundaries. Commun. Math. Phys. 310, 1–24 (2012). https://doi.org/10.1007/s00220-011-1395-6

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardos, C., Leroux, A.Y., Nédélec, J.C.: First order quasilinear equations with boundary conditions. Comm. Part. Differ. Equ. 4, 1017–1034 (1979)

    Article  MathSciNet  Google Scholar 

  3. Brak, R., Corteel, S., Essam, J., Parviainen, R., Rechnitzer, A.: Combinatorial derivation of the PASEP stationary state. Electron. J. Combin. 13, R108 (2006). https://doi.org/10.37236/1134

    Article  MathSciNet  MATH  Google Scholar 

  4. De Masi, A., Olla, S.: Quasi-static hydrodynamic limits. J. Stat. Phys. 161, 1037–1058 (2015). https://doi.org/10.1007/s10955-015-1383-x

    Article  MathSciNet  MATH  Google Scholar 

  5. De Masi, A., Olla, S.: Quasi-static large deviations. Annales H. Poincaré Probabilités et Statistiques 56(1), 524–542 (2020). https://doi.org/10.1214/19-AIHP971

    Article  MathSciNet  MATH  Google Scholar 

  6. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1D asymmetric exclusion model using a matrix formulation. J. Phys. A 26, 1493–1517 (1993)

    Article  MathSciNet  Google Scholar 

  7. Fritz, J.: Entropy Pairs and Compensated Compactness for Weakly Asymmetric Systems, Advanced Studies in Pure Mathematics, vol. 39, Stochastic Analysis on Large Scale Interacting Systems, pp. 143–171 (2004)

  8. Fritz, J., Tóth, B.: Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys. 249(1), 1–27 (2004)

    Article  MathSciNet  Google Scholar 

  9. Liggett, T.M.: Ergodic theorems for the asymmetric simple exclusion process. Trans. Am. Math. Soc. 213, 237–261 (1975)

    Article  MathSciNet  Google Scholar 

  10. Marchesani, S., Stefano Olla, L.X.: Quasi-static limit for a hyperbolic conservation law. Nonlinear Differ. Equ. Appl. NoDEA 28(53), 1–12 (2021). https://doi.org/10.1007/s00030-021-00716-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Otto, F.: Initial-boundary value problem for a scalar conservation law. Comptes rendus de l’Académie des Sciences Série 1 Mathématique 322, 729–734 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Popkov, V., Schütz, G.: Steady state selection in driven diffusive systems with open boundaries. Europhys. Lett. 48, 257–263 (1999)

    Article  Google Scholar 

  13. Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on \(Z^d\). Commun. Math. Phys. 140, 417–448 (1991)

    Article  Google Scholar 

  14. Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A Math. Gen. 37, 49–85 (2004)

    Article  MathSciNet  Google Scholar 

  15. Xu, L.: Hydrodynamic limit for asymmetric simple exclusion with accelerated boundaries, arXiv:2103.08019 (2021)

  16. Yau, H.T.: Logarithmic Sobolev inequality for generalized simple exclusion processes. Probab. Theory Relat. Fields 109, 507–538 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Olla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by ANR-15-CE40-0020-01 Grant LSD.

Appendix A. Logarithmic Sobolev inequalities

Appendix A. Logarithmic Sobolev inequalities

In this appendix we fix a box of length k. For \(\rho \in (0,1)\), let \(\nu _\rho \) be the product Bernoulli measure on \({\Omega }_k=\{0,1\}^K\) with density \(\rho \). For \(h = 0, 1, \dots , k\), let \(\nu _\rho (\eta |h) ={{\tilde{\nu }}}(\eta |h)\) be the uniform distribution on

$$\begin{aligned} {\Omega }_{k,h} := \left\{ \eta \in {\Omega }_k~\bigg |~\sum _{i=1}^k \eta _j =h \right\} , \end{aligned}$$
(A.1)

and \({\bar{\nu }}_\rho (h)\) be the Binomial distribution \({\mathcal {B}}(k,\rho )\).

The log-Sobolev inequality for the simple exclusion ([16]) yields that there exists a universal constant \(C_{\mathrm {LS}}\) such that

$$\begin{aligned} \begin{aligned} \sum _{\eta \in {\Omega }_{k,h}} f(\eta )\log f(\eta ) {{\tilde{\nu }}}(\eta |h) \le \frac{C_{\mathrm {LS}}k^2}{2} \sum _{\eta \in {\Omega }_{k,h}} \sum _{i=1}^{k-1} \left( \sqrt{f} (\eta ^{i,i+1}) - \sqrt{f} (\eta ) \right) ^2 {{\tilde{\nu }}}(\eta |h). \end{aligned} \end{aligned}$$
(A.2)

for any \(f\ge 0\) on \({\Omega }_{k,h}\) such that \(\sum _{\eta \in {\Omega }_{k,h}} f{{\tilde{\nu }}}(\eta |h) = 1\).

In the following we extend (A.2) to a log-Sobolev inequality associated to the product measure \(\nu _\rho \) with boundaries. The result is necessary for the boundary block estimates in Sects. 8.3 and 8.4.

Proposition A.1

There exists a constant \(C_\rho \) such that

$$\begin{aligned} \begin{aligned} \sum _{\eta \in {\Omega }_k} f(\eta )\log f(\eta ) \nu _\rho (\eta ) \le&C_\rho k^2 \sum _{\eta \in {\Omega }_k} \sum _{i=1}^{k-1} \left( \sqrt{f} (\eta ^{i,i+1}) - \sqrt{f} (\eta ) \right) ^2 \nu _\rho (\eta ) \\&+ C_\rho k \sum _{\eta \in {\Omega }_k} \rho ^{1-\eta _1}(1\!-\!\rho )^{\eta _1} \left( \sqrt{f} (\eta ^1) - \sqrt{f} (\eta ) \right) ^2 \nu _\rho (\eta ). \end{aligned} \end{aligned}$$
(A.3)

for any \(f\ge 0\) on \({\Omega }_k\) such that \(\sum _{\eta \in {\Omega }_k} f\nu _\rho = 1\).

Proof

As the reference measures \(\nu _\rho \) are equivalent for \(0<\rho <1\), without loss of generality we can fix \(\rho =1/2\) and thus \(\nu _\rho \equiv 2^{-k}\). Consider the log-Sobolev inequality for the dynamics where particles are created and destroyed at each site with intensity 1/2. Since this is a product dynamics, the log-Sobolev constant is uniform in k:

$$\begin{aligned} \begin{aligned} \frac{1}{2^k}\sum _{\eta \in {\Omega }_k} f(\eta )\log f(\eta ) \le \frac{C}{2^{k+1}} \sum _{i=1}^k \sum _{\eta \in {\Omega }_k} \left[ \sqrt{f}(\eta ^i) - \sqrt{f}(\eta ) \right] ^2. \end{aligned} \end{aligned}$$
(A.4)

We apply a telescopic argument on (A.4). For \(\eta \in \Omega _k\) and \(1 \le i \le k\), let

$$\begin{aligned} \begin{aligned} \tau _0 := \eta , \quad \tau _j := {\left\{ \begin{array}{ll} (\tau _{j-1})^{i-j,i-j+1}, &{}1 \le j \le i-1 \\ (\tau _{j-1})^1, &{}j=i \\ (\tau _{j-1})^{j-i,j-i+1}, &{}i+1 \le j \le 2i-1. \end{array}\right. } \end{aligned} \end{aligned}$$
(A.5)

Observing that \(\tau _{2i-1}=\eta ^i\), therefore

$$\begin{aligned} \sqrt{f}(\eta ^i) - \sqrt{f}(\eta ) = \sum _{j=0}^{2i-2} \left[ \sqrt{f}(\tau _{j+1}) - \sqrt{f}(\tau _j) \right] , \end{aligned}$$
(A.6)

and elementary computation then gives

$$\begin{aligned} \left[ \sqrt{f}(\eta ^i) - \sqrt{f}(\eta )\right] ^2 \le&\;4 (i-1) \sum _{0 \le j \le 2(i-1), j\not =i-1} \left[ \sqrt{f}(\tau _{j+1}) - \sqrt{f}(\tau _j) \right] ^2 \\&+2 \left[ \sqrt{f}(\tau _i) - \sqrt{f}(\tau _{i-1}) \right] ^2. \end{aligned}$$

Noting that as \(\rho =1/2\), \(\nu _\rho \) is invariant with respect to the exchange, creation as well as elimination of particles, we obtain by summing up in \(\eta \) that

$$\begin{aligned} \begin{aligned} \sum _{\eta \in {\Omega }_k} \left[ \sqrt{f}(\eta ^i) \!-\! \sqrt{f}(\eta ) \right] ^2\nu _\rho (\eta ) \le&\;8(i-1) \sum _{\eta \in {\Omega }_k} \sum _{j=1}^{i-1} \left[ \sqrt{f}(\eta ^{j,j+1}) \!-\! \sqrt{f}(\eta ) \right] ^2\nu _\rho (\eta ) \\&+ 2\sum _{\eta \in {\Omega }_k} \left[ \sqrt{f}(\eta ^1) - \sqrt{f}(\eta ) \right] ^2\nu _\rho (\eta ). \end{aligned} \end{aligned}$$

Summing up in i we get the required inequality. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Masi, A., Marchesani, S., Olla, S. et al. Quasi-static limit for the asymmetric simple exclusion. Probab. Theory Relat. Fields 183, 1075–1117 (2022). https://doi.org/10.1007/s00440-022-01140-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-022-01140-1

Mathematics Subject Classification

Navigation