pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language. Install pandas now!
2018/12/27 è¿½è¨ ãã®è¨äºã¯ããªãæã®æ å ±ãæ··ãã£ã¦ããå¯è½æ§ãããã¾ãã å ã®è¨äºã«ãããã¤ãä¿®æ£ãå ¥ã£ã¦ããããã§ããããã®ç¿»è¨³è¨äºã§ã¯ç¹ã«ä¿®æ£ãå®æ½ãã¦ãã¾ãããã注æãã ããã æ£ç¢ºãªæ å ±ã¯å è¨äºãåç §ãã¦ãã ããã è¨äº ãã®è¨äºã®å訳ã§ãã è²ã ééã£ã¦ããå¯è½æ§ãããã®ã§ã注æãã ããã NumPyã¯Pythonã®ç§å¦è¨ç®ã½ãããã§ã¢ç¾¤ã®åºç¤ã¨ãªããã®ã§ãã NumPyã¯ndarrayã¨ãããã¯ãã«è¨ç®ã«æé©åãããç¹å¥ãªãã¼ã¿æ§é ãæä¾ãã¾ãã ãã®ãªãã¸ã§ã¯ãã¯ãç§å¦æ°å¤è¨ç®ã®ä¸ã®å¤ãã®ã¢ã«ã´ãªãºã ã®æ ¸ã¨ãªã£ã¦ãã¾ãã ç¹ã«è¨ç®ãã²ã¨ã¤ã®å½ä»¤ã§å¤ãã®ãã¼ã¿ãæä½ãã (SIMD) ãã©ãã¤ã ã«æ²¿ã£ã¦ããæãNumpy array (é å)ã使ããã¨ã§ãã¤ãã£ããªPythonãããããªãã®ããã©ã¼ãã³ã¹ã®é«éåãéæã§ãã¾ãã ããããæé©åããã¦ããªãNumPy
ååã¯ãnumpyã§è¡åãæ±ãã¾ããã ä»åã¯ãmatploblibã§æãç·ã°ã©ããæ¸ãã¾ãã 軸ã®ååã¨ãè²ã¨ãããããã°ã©ãã®ä½è£å¨ãã®è©±ã¯ã¾ãä»åº¦æ¸ãã¾ãã ä»ã®ãã¹ãã°ã©ã ã¨ãã次åã«ãã¾ãã 以åã®ã話ã¯ãã¡ã matplotlibã§ã°ã©ããæ¸ã - ããç¼ãé£ã¹ã.net ã¯ããã«(pylabã¨matplotlib) ã°ã©ãã®æç»ã«ã¯matplotlibã¨ããã©ã¤ãã©ãªãç¨ãã¾ãã ããã«ã¯ãpylabã¨ããã¢ã¸ã¥ã¼ã«ãç¨æããã¦ãã¾ãã ããã¯ã matplotlib.pyplotå ã«ããããããç¨ã®é¢æ° numpyã®é¢æ° matplotlib.mlabã«ããé¢æ° ãæä¾ãã¦ããã®ã§é常ã«ä½¿ãåæãè¯ãã§ãã ã¨ããããã§ãããããå ããã°ããã¯ã from pylab import * ã¨ãã¦pylabãã¤ã³ãã¼ããã¦ããã¾ãã matplotlibã®ãµã³ãã«ãè¦ã¦ããã¨ã
ã³ã¼ããæ¸ãã¦ããéä¸ã§ããµã¨ãæãæ¢ã¾ã£ãã㨠Python ãã¤ãã£ãã³ã¼ãå®ä¾ãã¿ã¦ããã¨ãimport pylab ã¨ã¤ã³ãã¼ããã¦ããã®ãé »ç¹ã«è¦ãããããã¾ãã pylabã«ã¤ãã¦èª¿ã¹ã¦ã¿ãã¨ã Python ã«ããMATLAB pylabã¯ã¤ã³ã¿ã¼ãã§ã¤ã¹ã§ãæ¬ä½ã¯matplotlibãªã®ã§ããããã¤ã³ã¹ãã¼ã«ããã ã¨ãã£ãè¨è¿°ãã import pylab # pythonã®MATLAB likeãªã¤ã³ã¿ã¼ãã§ã¤ã¹ ã¨ãã£ã説æãç®ã«ä»ãããããã ã§ããpylab ã§ã°ã©ããæç»ãããããã¦ããã ããï¼ matplotlib.pyplot.plot() ã¨ãpylab ã¨ã®é¢ä¿ã£ã¦ãä½ï¼ï¼ 以ä¸ã§é ãæ´çã§ãã¾ããï¼ ããç¼ãé£ã¹ã.net ãmatplotlibã使ãã ã¯ããã«(pylabã¨matplotlib) ã°ã©ãã®æç»ã«ã¯matplotlibã¨ããã©ã¤ãã©
Getting started What is NumPy? Installation NumPy quickstart NumPy: the absolute basics for beginners Fundamentals and usage NumPy fundamentals Array creation Indexing on ndarrays I/O with NumPy Data types Broadcasting Copies and views Working with Arrays of Strings And Bytes Structured arrays Universal functions (ufunc) basics NumPy for MATLAB users NumPy tutorials NumPy how-tos Advanced usage an
Pythonã§ä¸çªæåã§æ®åãã¦ããã©ã¤ãã©ãªã¨è¨ã£ã¦ãéè¨ã§ã¯ãªããNumpyãã®è¦æ¸ãã§ããããªãå¤æ©è½ãªæ°å¤è¨ç®ã©ã¤ãã©ãªã§ãå é¨ã¯Cè¨èªã§è¨è¿°ããã¦ããããè¶ é«éã«åä½ãã¾ãã ãã¯ãã« ãã¯ãã«ã®é·ãï¼æ£è¦å import numpy a = numpy.array([[2,2]]) #ãã¯ãã«ã®é·ã length = numpy.linalg.norm(a) #length=>2.8284271247461903 #ãã¯ãã«ã®æ£è¦å a / numpy.linalg.norm(a) #=>array([[ 0.70710678, 0.70710678]]) å ç©ï¼å¤ç© import numpy v1 = numpy.array((1,0,0)) v2 = numpy.array((0,1,0)) #å ç© numpy.dot(v1,v2) #=> 0 #å¤ç© numpy.cros
Windows, Python2.6, 2010/3/8ã®è©±é¡ã NumPyã¯Pythonã®æ°å¤è¨ç®ã©ã¤ãã©ãªã§ãã http://new.scipy.org/download.htmlãããã¦ã³ãã¼ãã§ãã¾ãã SourceForge site for NumPyããnumpy-1.3.0-win32-superpack-python2.6.exeããã¦ã³ãã¼ã ç¹ã«è¨å®ãªãã«ã¤ã³ã¹ãã¼ã«ã§ãã¾ãã 以ä¸ä½¿ãæ¹ã®ã¡ã¢ã§ãã é åãªãã¸ã§ã¯ã é åããã¯ãã«ã¨ãã¦ä½¿ãã¾ãã "*"ã¯å ç©ã§ã¯ãªããè¦ç´ ãã¨ã®ç©ãã¨ã£ããã¯ãã«ãªã®ã§æ³¨æ from numpy import * u = array( [ 1, 2, 3 ] ) print u v = arange( 3 ) #[ 0, 1, 2 ] print v print u + v print u * v print "---" pri
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}