The woefully complete guide¶ by Alex Reinhart If youâre a practicing scientist, you probably use statistics to analyze your data. From basic t tests and standard error calculations to Cox proportional hazards models and propensity score matching, we rely on statistics to give answers to scientific problems. This is unfortunate, because statistical errors are rife. Statistics Done Wrong is a guide
pbdR - Programming with Big Data in R
ãã¥ã¼ã¹ã¢ããªSmartNews(https://www.smartnews.be/)ã®èæ¯ã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦TokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)ã§è©±ããã¦ããã ããéã®è³æã§ãã â¢SmartNews iphoneç: https://itunes.apple.com/jp/app/id579581125 â¢SmartNews Androidç https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android â¢SmartNewséçºè ããã° http://developer.smartnews.be/blog/
è¿½è¨ 2016å¹´3æã«ä»¥ä¸ã®è¨äºã«ãã£ã¦ãã®å 容ã¯updateããã¦ãã¾ããä»å¾ã¯ãã¡ãããèªã¿ä¸ããã 主ã«èªååãã®ã¾ã¨ãã¨ããæå³åããå¼·ããã§ããï¼ç¬ï¼ãåãå®éã«2013å¹´6æç¾å¨webãã¼ã¿åæï¼ãã¼ã¿ãµã¤ã¨ã³ã¹ã®å®åã§ãã¼ã«ã»ã©ã¤ãã©ãªã»ããã±ã¼ã¸ãå©ç¨ãã¦ãããã®ã«éã£ã¦ãçµ±è¨å¦ã»æ©æ¢°å¦ç¿ç³»ã®åæææ³ã10åæãã¦ç´¹ä»ãã¦ã¿ããã¨æãã¾ãã è¿½è¨ å帰åæï¼ç¹ã«ç·å½¢éå帰åæï¼ ç¬ç«æ§ã®æ¤å®ï¼ã«ã¤äºä¹æ¤å®ã»ãã£ãã·ã£ã¼ã®æ£ç¢ºç¢ºçæ¤å®ï¼ 主æååæ(PCA) / å ååæ ã¯ã©ã¹ã¿ãªã³ã° æ±ºå®æ¨ / åå¸°æ¨ ãµãã¼ããã¯ã¿ã¼ãã·ã³(SVM) ãã¸ã¹ãã£ãã¯å帰 ã©ã³ãã ãã©ã¬ã¹ã ã¢ã½ã·ã¨ã¼ã·ã§ã³åæï¼ãã¹ã±ããåæã»ç¸é¢ã«ã¼ã«æ½åºï¼ è¨éæç³»ååæ ãããã« ãã¾ã1ï¼ãç´ æ§ãã¯ãã«ï¼åé¡ã©ãã«ããªããã¼ã¿åå¦ç ãã¾ã2ï¼ã°ã©ãçè«*10 {igraph}ããã±ã¼ã¸ã§ã°ã©
ãDL輪èªä¼ãHow Much Can CLIP Benefit Vision-and-Language Tasks?
CodeZineç·¨éé¨ã§ã¯ãç¾å ´ã§æ´»èºãããããããã¼ãã¹ã¿ã¼ã«ããããã®ã«ã³ãã¡ã¬ã³ã¹ãDevelopers Summitãããã¨ã³ã¸ãã¢ã®çããã¾ããã¼ã¹ãããããã®ã¤ãã³ããDevelopers Boostããªã©ããã¾ãã¾ãªã«ã³ãã¡ã¬ã³ã¹ãä¼ç»ã»éå¶ãã¦ãã¾ãã
2010/12/13 第9å å¹³æ»åæ³ãä¸è¬åå æ³ã¢ãã« æ±äº¬ã®å¹³åæ°æ¸© 1876å¹´ï½2007å¹´ ï¼åå¤éï¼å帰ã¢ãã« y ï½ ï¢ 0 ï« ï¢1 ï´ year ï« ï¥ çµ±è¨é¢é£å¦ä¼é£å çµ±è¨æè²æ¨é²å§å¡ä¼ æææè²ãµã¤ããã å¾åãããã£ã¨æè»ã«è¡¨ç¾ããã 1 2010/12/13 第9å ç§»å平忳 (2m+1)é ç§»åå¹³åï¼å½æã¨åå¾mæã®åè¨(2m+1)æã® å¹³åã彿ã®ç§»åå¹³åå¤ã¨ãã æ±äº¬ã®å¹³åæ°æ¸© 21é ç§»åå¹³å 1876å¹´ï½2007å¹´ 2 2010/12/13 第9å 屿éã¿ä»ãåå¸°æ³ ç§»å平忳ï¼å±æçãªå¹³å 屿éã¿ä»ãåå¸°æ³ å±æçã«å¤é å¼å帰ã¢ãã«ããã¦ã¯ãã x ã®è¿åã§å±æçã« =  x ã«è¿ãã»ã©å¤§ããªéã¿ã é ãå¤ã«ã¯ï¼ã®éã¿ããä»ã㦠å¤é å¼ãæå°ï¼ä¹æ³ã§ãã¦ã¯ãã ï¥ wï¨ xi ï x ï©ï¨ y ï f ( xi )ï© i 2
å ¸åçãªãã¼ã¬ã³ãæ²ç· å¹³æ17年度å½å¢èª¿æ»éå ±ãå ã«ä½æãããã¼ã¬ã³ãæ²ç·ï¼é½éåºçå¥ï¼ ãã¼ã¬ã³ãæ²ç·ï¼ãã¼ã¬ã³ãããããããè±: Lorenz curveï¼ã¨ã¯ãããåå¸ãæã¤äºè±¡ã«ã¤ãã¦ã確ç夿°ãåãå¾ãå¤ã夿°ã¨ãã確ç夿°ã®å¤ãä¸ãããã夿°ã®å¤ãè¶ ããªãç¯å²ã«ããã確ç夿°ã¨å¯¾å¿ãã確çã®ç©ã®åï¼ãããã¯ç¢ºç夿°ã¨ç¢ºçå¯åº¦é¢æ°ã®ç©ã®ç©åï¼ãããã®åå¸ã«å¯¾ãã確ç夿°ã®æå¾ å¤ã§å²ã£ã¦è¦æ ¼åãããã®ã¨ãã¦ä¸ãããã颿°ã®å¹¾ä½å¦çãªè¡¨ç¾ã®ãã¨ã§ãããè¨ãæããã¨ãããéå£ã«å«ã¾ããä¸ä½éå£ã«å¯¾ããæå¾ å¤ãå ¨ä½ã®æå¾ å¤ã§å²ã£ããã®ããã®ä¸ä½éå£ãã¨ã«ãããããããã®ã¨ãè¨ããã ãããã¯ã確ç夿°ã®å¤ãããå¤ãä¸åãéå£ã®å²åã¯ããããã¨ãå¾ã確ç夿°ã®å¤ã®ä¸éã¨ä¸å¯¾ä¸ã«å¯¾å¿ä»ãããããããå ¨ä½ã«å¯¾ããä¸ä½éå£ã®å²åã夿°ã¨ãã颿°ã¨ãã¦ã表ããã¨ãã§ããã ãã¼ã¬ã³ãæ²ç·ã¯ä¸ä½é
ã¸ãä¿æ°ï¼ã¸ããããããè±: Gini coefficientãã¸ãã¤ã³ããã¯ã¹ãè±: Gini indexãGini ratioï¼ã¨ã¯ããã¼ã¿ã®ä¸åçãã表ãçµ±è¨å¤ã§ãã[1]ãããã¯ã社ä¼ã«ãããæå¾ã®ä¸å¹³çããæ¸¬ãææ¨ã¨ãã¦ä½¿ããããã¨ãå¤ãã0ãã1ã§è¡¨ãããåäººã®æå¾ãåä¸ã§æ ¼å·®ãå ¨ããªãç¶æ ã0ããã£ãä¸äººãå ¨ã¦ã®æå¾ãç¬å ãã¦ããç¶æ ã1ã¨ãã[2][3][1]ããã¼ã¬ã³ãæ²ç·ããã¨ã«ã1912å¹´ã«ã¤ã¿ãªã¢ã®çµ±è¨å¦è ãã³ãã©ãã»ã¸ãã«ãã£ã¦èæ¡ããã[1]ããã以å¤ã«ããå¯ã®å卿§ãã¨ãã«ã®ã¼æ¶è²»ã«ãããä¸å¹³çãã彿°çµæ¸è¨ç®ãªã©ã«å¿ç¨ããã[2][3]ã ã¸ãä¿æ°ãã¨ãå¤ã®ç¯å²ã¯0ãã1ã§ãä¿æ°ã®å¤ã大ãããã°å¤§ããã»ã©ãã®éå£ã«ãããæ ¼å·®ã大ããç¶æ ã§ããã¨ããè©ä¾¡ã«ãªã[2][4][1]ãç¹ã«ã¸ãä¿æ°ã0ã§ããç¶æ ã¯ããã¼ã¬ã³ãæ²ç·ãåçåé ç·ã«ä¸è´ãããããªç¶æ ã§ãã
ã·ã£ããâã¦ã£ã«ã¯æ¤å®ï¼ã·ã£ããâã¦ã£ã«ã¯ããã¦ããè±èª: ShapiroâWilk testï¼ã¨ã¯ã çµ±è¨å¦ã«ããã¦ãæ¨æ¬ x1, ..., xn ãæ£è¦åå¸ã«å¾ãæ¯éå£ãããµã³ããªã³ã°ããããã®ã§ããã¨ãã帰ç¡ä»®èª¬ãæ¤å®ããæ¤å®ã§ããããã®æ¤å®æ¹æ³ã¯ããµãã¥ã¨ã«ã»ã·ã£ããï¼è±èªçï¼ã¨ãã¼ãã£ã³ã»ã¦ã£ã«ã¯ï¼è±èªçï¼ã1965å¹´ã«çºè¡¨ãã[1]ã æ¤å®çµ±è¨éã¯ã ãã ãã x(i)ï¼æ¬å¼§ã§å²ã¾ããæ·»ãåãiãã®ã¤ããï¼ã¯ãiçªç®ã®é åºçµ±è¨éãã¤ã¾ããæ¨æ¬ã®ä¸ã§içªç®ã«å°ããæ°å¤ã§ããã ã¯ãæ¨æ¬å¹³åã§ããã 宿°aiã¯ã次ã®å¼ã«ãã£ã¦ä¸ããããã ãã ãã m1, ..., mnã¯ãæ¨æºæ£è¦åå¸ãããµã³ããªã³ã°ãããç¬ç«ååå¸ã®ç¢ºç夿°ã®é åºçµ±è¨éã®æå¾ å¤ã§ãããV ã¯ãã®é åºçµ±è¨éã®åæ£å ±åæ£è¡åã§ããã 帰ç¡ä»®èª¬ã¯ãWãå°ããããå ´åã«æ£å´ãããã
ã¡ã³ããã³ã¹
ã©ã³ãã³ã°
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}