The woefully complete guide¶ by Alex Reinhart If youâre a practicing scientist, you probably use statistics to analyze your data. From basic t tests and standard error calculations to Cox proportional hazards models and propensity score matching, we rely on statistics to give answers to scientific problems. This is unfortunate, because statistical errors are rife. Statistics Done Wrong is a guide
pbdR - Programming with Big Data in R
ãã¥ã¼ã¹ã¢ããªSmartNews(https://www.smartnews.be/)ã®èæ¯ã®ã¢ã«ã´ãªãºã ã«ã¤ãã¦TokyoWebMining30th(http://tokyowebmining30.eventbrite.com/)ã§è©±ããã¦ããã ããéã®è³æã§ãã â¢SmartNews iphoneç: https://itunes.apple.com/jp/app/id579581125 â¢SmartNews Androidç https://play.google.com/store/apps/details?id=jp.gocro.smartnews.android â¢SmartNewséçºè ããã° http://developer.smartnews.be/blog/Read less
è¿½è¨ 2016å¹´3æã«ä»¥ä¸ã®è¨äºã«ãã£ã¦ãã®å 容ã¯updateããã¦ãã¾ããä»å¾ã¯ãã¡ãããèªã¿ä¸ããã 主ã«èªååãã®ã¾ã¨ãã¨ããæå³åããå¼·ããã§ããï¼ç¬ï¼ãåãå®éã«2013å¹´6æç¾å¨webãã¼ã¿åæï¼ãã¼ã¿ãµã¤ã¨ã³ã¹ã®å®åã§ãã¼ã«ã»ã©ã¤ãã©ãªã»ããã±ã¼ã¸ãå©ç¨ãã¦ãããã®ã«éã£ã¦ãçµ±è¨å¦ã»æ©æ¢°å¦ç¿ç³»ã®åæææ³ã10åæãã¦ç´¹ä»ãã¦ã¿ããã¨æãã¾ãã è¿½è¨ å帰åæï¼ç¹ã«ç·å½¢éå帰åæï¼ ç¬ç«æ§ã®æ¤å®ï¼ã«ã¤äºä¹æ¤å®ã»ãã£ãã·ã£ã¼ã®æ£ç¢ºç¢ºçæ¤å®ï¼ 主æååæ(PCA) / å ååæ ã¯ã©ã¹ã¿ãªã³ã° 決å®æ¨ / åå¸°æ¨ ãµãã¼ããã¯ã¿ã¼ãã·ã³(SVM) ãã¸ã¹ãã£ãã¯å帰 ã©ã³ãã ãã©ã¬ã¹ã ã¢ã½ã·ã¨ã¼ã·ã§ã³åæï¼ãã¹ã±ããåæã»ç¸é¢ã«ã¼ã«æ½åºï¼ è¨éæç³»ååæ ãããã« ãã¾ã1ï¼ãç´ æ§ãã¯ãã«ï¼åé¡ã©ãã«ããªããã¼ã¿åå¦ç ãã¾ã2ï¼ã°ã©ãçè«*10 {igraph}ããã±ã¼ã¸ã§ã°ã©
2. å®ã¯ ⢠Tokyo.R#05ã§ãã§ã«ã¢ã½ã·ã¨ã¼ã·ã§ã³åæã¯åãä¸ããã㦠ããï¼ â¢ http://www.slideshare.net/hamadakoichi/r-r-4219052 3. ã¢ã½ã·ã¨ã¼ã·ã§ã³åæã¨ã¯ï¼ ⢠POSãã¼ã¿ãECãµã¤ãã®åå¼ãã¼ã¿ããä¸ç·ã«è²·ãããã ãååã®çµã¿åãããæ¢ãæ¢ç´¢çãã¼ã¿åæã®ææ³ã ⢠ååå士ã®çµã¿åããã ãã§ãªãã顧客ã®å±æ§ã購買æé帯ãªã©ã¨ã® çµã¿åãããåæå¯è½ã ⢠ãããã¤ã¨ãã¼ã«ãã®äºä¾ã§æåã ⢠ãååAãè²·ãã¨ååBãè²·ã確çãé«ããã¨ãããããªã«ã¼ã« ãè¦ã¤ãåºãããã®ææ³ã ⢠ãã¡ãããããã«ãã®ãããªã«ã¼ã«ããªããã°ä½ãåºã¦ããªãã 4. ã¢ã½ã·ã¨ã¼ã·ã§ã³åæã¨ã¯ï¼ ⢠ãããããã¼ã¿ãã¤ãã³ã°ã®ä»£è¡¨çãªææ³ã®ä¸ã¤ã§ãåã« ããã¼ã¿ãã¤ãã³ã°ãã¨è¨ã£ã¦ãã¢ã½ã·ã¨ã¼ã·ã§ã³åæãæãã¦ã ãã±ã¼ã¹ãæ£è¦ããã
CodeZineç·¨éé¨ã§ã¯ãç¾å ´ã§æ´»èºãããããããã¼ãã¹ã¿ã¼ã«ããããã®ã«ã³ãã¡ã¬ã³ã¹ãDevelopers Summitãããã¨ã³ã¸ãã¢ã®çããã¾ããã¼ã¹ãããããã®ã¤ãã³ããDevelopers Boostããªã©ããã¾ãã¾ãªã«ã³ãã¡ã¬ã³ã¹ãä¼ç»ã»éå¶ãã¦ãã¾ãã
ãMarkeZineãã主å¬ãããã¼ã±ãã£ã³ã°ã»ã¤ãã³ããMarkeZine DayããMarkeZine AcademyããMarkeZine ãã¬ãã¢ã ã»ããã¼ãã® ææ°æ å ±ãã¯ãããæ§ã ãªã¤ãã³ãæ å ±ãã¾ã¨ãã¦ãç´¹ä»ãã¾ãã MarkeZine Day
2010/12/13 第9å å¹³æ»åæ³ãä¸è¬åå æ³ã¢ãã« æ±äº¬ã®å¹³åæ°æ¸© 1876å¹´ï½2007å¹´ ï¼åå¤éï¼å帰ã¢ãã« y ï½ ï¢ 0 ï« ï¢1 ï´ year ï« ï¥ çµ±è¨é¢é£å¦ä¼é£å çµ±è¨æè²æ¨é²å§å¡ä¼ æææè²ãµã¤ããã å¾åãããã£ã¨æè»ã«è¡¨ç¾ããã 1 2010/12/13 第9å 移åå¹³åæ³ (2m+1)é 移åå¹³åï¼å½æã¨åå¾mæã®åè¨(2m+1)æã® å¹³åãå½æã®ç§»åå¹³åå¤ã¨ãã æ±äº¬ã®å¹³åæ°æ¸© 21é 移åå¹³å 1876å¹´ï½2007å¹´ 2 2010/12/13 第9å å±æéã¿ä»ãåå¸°æ³ ç§»åå¹³åæ³ï¼å±æçãªå¹³å å±æéã¿ä»ãåå¸°æ³ å±æçã«å¤é å¼å帰ã¢ãã«ããã¦ã¯ãã x ã®è¿åã§å±æçã« =  x ã«è¿ãã»ã©å¤§ããªéã¿ã é ãå¤ã«ã¯ï¼ã®éã¿ããä»ã㦠å¤é å¼ãæå°ï¼ä¹æ³ã§ãã¦ã¯ãã ï¥ wï¨ xi ï x ï©ï¨ y ï f ( xi )ï© i 2
å ¸åçãªãã¼ã¬ã³ãæ²ç· å¹³æ17年度å½å¢èª¿æ»éå ±ãå ã«ä½æãããã¼ã¬ã³ãæ²ç·ï¼é½éåºçå¥ï¼ ãã¼ã¬ã³ãæ²ç·ï¼ãã¼ã¬ã³ãããããããè±: Lorenz curveï¼ã¨ã¯ãããåå¸ãæã¤äºè±¡ã«ã¤ãã¦ã確çå¤æ°ãåãå¾ãå¤ãå¤æ°ã¨ãã確çå¤æ°ã®å¤ãä¸ããããå¤æ°ã®å¤ãè¶ ããªãç¯å²ã«ããã確çå¤æ°ã¨å¯¾å¿ãã確çã®ç©ã®åï¼ãããã¯ç¢ºçå¤æ°ã¨ç¢ºçå¯åº¦é¢æ°ã®ç©ã®ç©åï¼ãããã®åå¸ã«å¯¾ãã確çå¤æ°ã®æå¾ å¤ã§å²ã£ã¦è¦æ ¼åãããã®ã¨ãã¦ä¸ããããé¢æ°ã®å¹¾ä½å¦çãªè¡¨ç¾ã®ãã¨ã§ãããè¨ãæããã¨ãããéå£ã«å«ã¾ããä¸ä½éå£ã«å¯¾ããæå¾ å¤ãå ¨ä½ã®æå¾ å¤ã§å²ã£ããã®ããã®ä¸ä½éå£ãã¨ã«ãããããããã®ã¨ãè¨ããã ãããã¯ã確çå¤æ°ã®å¤ãããå¤ãä¸åãéå£ã®å²åã¯ããããã¨ãå¾ã確çå¤æ°ã®å¤ã®ä¸éã¨ä¸å¯¾ä¸ã«å¯¾å¿ä»ãããããããå ¨ä½ã«å¯¾ããä¸ä½éå£ã®å²åãå¤æ°ã¨ããé¢æ°ã¨ãã¦ã表ããã¨ãã§ããã ãã¼ã¬ã³ãæ²ç·ã¯ä¸ä½é
ã¸ãä¿æ°ï¼ã¸ããããããè±: Gini coefficientï¼ã¨ã¯ããã¼ã¿ã®ä¸åçãã表ãçµ±è¨å¤ã§ãããããã¯ã社ä¼ã«ãããæå¾ã®ä¸å¹³çãã測ãææ¨ã¨ãã¦ä½¿ããããã¨ãå¤ãã0ãã1ã§è¡¨ãããå人ã®æå¾ãåä¸ã§æ ¼å·®ãå ¨ããªãç¶æ ã0ããã£ãä¸äººãå ¨ã¦ã®æå¾ãç¬å ãã¦ããç¶æ ã1ã¨ããããã¼ã¬ã³ãæ²ç·ããã¨ã«ã1912å¹´ã«ã¤ã¿ãªã¢ã®çµ±è¨å¦è ãã³ãã©ãã»ã¸ãã«ãã£ã¦èæ¡ãããããã以å¤ã«ããå¯ã®åå¨æ§ãã¨ãã«ã®ã¼æ¶è²»ã«ãããä¸å¹³çããªã©ã«å¿ç¨ãããã ã¸ãä¿æ°ãã¨ãå¤ã®ç¯å²ã¯0ãã1ã§ãä¿æ°ã®å¤ã大ãããã°å¤§ããã»ã©ãã®éå£ã«ãããæ ¼å·®ã大ããç¶æ ã§ããã¨ããè©ä¾¡ã«ãªããç¹ã«ã¸ãä¿æ°ã0ã§ããç¶æ ã¯ããã¼ã¬ã³ãæ²ç·ãåçåé ç·ã«ä¸è´ãããããªç¶æ ã§ãããå人ã®æå¾ãåä¸ã§ãæ ¼å·®ãå ¨ããªãç¶æ ã表ããéã«ã¸ãä¿æ°ã1ã§ããç¶æ ã¯ããã¼ã¬ã³ãæ²ç·ã横軸ã«ä¸è´ãããããªç¶æ ã§ããããã£ã1人ãéå£
ã·ã£ããâã¦ã£ã«ã¯æ¤å®ï¼ã·ã£ããâã¦ã£ã«ã¯ããã¦ããè±èª: ShapiroâWilk testï¼ã¨ã¯ã çµ±è¨å¦ã«ããã¦ãæ¨æ¬ x1, ..., xn ãæ£è¦åå¸ã«å¾ãæ¯éå£ãããµã³ããªã³ã°ããããã®ã§ããã¨ãã帰ç¡ä»®èª¬ãæ¤å®ããæ¤å®ã§ããããã®æ¤å®æ¹æ³ã¯ããµãã¥ã¨ã«ã»ã·ã£ããï¼è±èªçï¼ã¨ãã¼ãã£ã³ã»ã¦ã£ã«ã¯ï¼è±èªçï¼ã1965å¹´ã«çºè¡¨ãã[1]ã å®ç¾©[ç·¨é] æ¤å®çµ±è¨éã¯ã ãã ãã x(i)ï¼æ¬å¼§ã§å²ã¾ããæ·»ãåãiãã®ã¤ããï¼ã¯ãiçªç®ã®é åºçµ±è¨éãã¤ã¾ããæ¨æ¬ã®ä¸ã§içªç®ã«å°ããæ°å¤ã§ããã ã¯ãæ¨æ¬å¹³åã§ããã å®æ°aiã¯ã次ã®å¼ã«ãã£ã¦ä¸ããããã ãã ãã m1, ..., mnã¯ãæ¨æºæ£è¦åå¸ãããµã³ããªã³ã°ãããç¬ç«ååå¸ã®ç¢ºçå¤æ°ã®é åºçµ±è¨éã®æå¾ å¤ã§ãããV ã¯ãã®é åºçµ±è¨éã®åæ£å ±åæ£è¡åã§ããã 帰ç¡ä»®èª¬ã¯ãWãå°ããããå ´åã«æ£å´ãããã åèæç®[ç·¨é] Al
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}