LoRAå¦ç¿ã®æè¡ã¯æ¥é²ææ©ã§ããããã®æ ¹æ¬ã¨ãªãå¦ç¿ææ³ã¯åæã®æ®µéããã»ã¨ãã©å¤ãã£ã¦ãã¾ãããä»åã¯æ°ããå¦ç¿ææ³ãéçºããã®ã§è§£èª¬ãã¾ãããã®æè¡ã§ã¯ã³ãã¼æ©å¦ç¿ã§è¡ã£ã¦ããå·®åå¦ç¿ã®æè¦æéã10ï½20åã®1ã«ç縮ããè¤æ°ã®ç»åã»ããã®åæå¦ç¿ãå¯è½ã¨ãã¾ããç»åã¢ãã«ã ãã§ãªãä»ã®æ¡æ£ã¢ãã«å ¨è¬ã«å¿ç¨ã§ããå¯è½æ§ãããã¾ãã LoRAå¦ç¿ã¨ã³ãã¼æ©å¦ç¿æ³ããã¾ãã¯ãµã¤ãã®å¦ç¿ææ³ã«ã¤ãã¦ãããããã¦ã¿ã¾ãããã ä¼çµ±çãªå¦ç¿æ¹æ³ããµã¤ãã®LoRA(ã¢ãã«ãåã)å¦ç¿éç¨ã§ã¯ããã¤ãºãå ããããç»å ( $${x_t}$$ ) ã U-Net (æè¿ã®ã¢ãã«ã¯ DiT ã ã£ãããã¾ãã) ã«éãã¦åºã¦ããäºæ¸¬ãã¤ãº ( $${\hat{\epsilon}_\theta(x_t, t)}$$ ) ã¨ãæ¬æ¥ã®ãã¤ãº ( $${\epsilon}$$ ) ãæ¯è¼ãã¾ãã$${L}$$ã
注ï¼æ¬ãã¼ã¸ã¯å·çä¸ã®ã¡ã¢æ®µéã§ãã ï¼æ å ±ãæ¶ããåã«ã¡ã¢ããã®ãç®çãªã®ã§ãä¿¡ææ§ã¯æ ä¿ã§ãã¾ãããï¼ ãªã'23/12ææ«ãç®å¦ã«ãLCMããã¥ã¼ã¹ï¼ã¹ã¬ã§å¸¸ç¨ããã¦ãããããªãããå·çä¸ããå¤ãäºå®ã§ãã è¿·ã£ã¦æ¥ã(ã¾ãã¯è¿·ã£ã¦ãã)人åã åã®æå ã«ããããããLCM_LoRA_Weightsã¨ãpytorch_lora_weightsã¨ãã®ååã®ã¤ãããã¡ã¤ã«ã¯ãDreamshaper-V7ãçã¹ãããæ°ã§åç¾ã§ããLoRAãã§ãããå¤ãæ å ±ã§ã¯ãLCMãå°å ¥ããã¢ãã«ãå¿ è¦ãªã®ã§æ¢ãã¦ã¿ãããçæ¸ããã¦ãããã¨ããããããã®ç´å¾ã®LCM_LoRAã®ç»å ´ã§ä¸è¦ã¨ãªã£ã(LoRAãªã®ã§å¥½ããªã¢ãã«ã¨ä½µç¨ã§ãã)ããã®ãã¡ã¤ã«ããããã°ãããã¡ãªã¿ã«Hashå¤ãåããªãååéã£ã¦ãåããã¡ã¤ã«ã§ããã1åã§ãããã Dreamshaperã¯ããã¨æ±ç¨çãªã¢ãã«ã§ã¯ããããç¹å®ã®ã¢
ãåç¥ã®æ¹ãå¤ãããç¥ãã¾ããããcivitaiãè¦ãã¨HunyuanVideoã®LoRAãå¤æ°åºã¦ãã¾ããã ãã®ãããå¢ãã§ãLoRAãå¢ãã¦ããå°è±¡ã§ãã ä»ã¯HunyuanVideoçéãç±ãï¼ï¼ããã§ãã ã¡ãªã¿ã«Civitaiã®ãµã¤ãã§ã®è¡¨ç¤ºæ¹æ³ã«ã¤ãã¦ã¯ãå³ä¸ã®ãã£ã«ã¿ã¼ã®é¨åããLoRAã¨HunyuanVideoãé¸æããã¨åºã¦ãã¾ãã å¡æºã§ãªããã®ã¨å¡æºãªãã®ãããã¾ãããä¸çªä¸ã¯å¡æºãªãã®ãåºã¦ãã¾ããä¸çã®å¡æºåã®é«ããæãã¾ããã Huggingfaceãæ¢ãã¦ãããã¤ãLoRAãè¦ããã¾ãã HunyuanVideoã«LoRAã使ç¨ããæ¹æ³ã¯ãã¢ãã«ã®ã¿ã§ä»ããããã¼ãå ¬éããã¦ãã¾ããã ã·ã¼ãå¤ãåºå®ãã¦è©ä¾¡ããã¦ã¿ã¾ããã ãã¡ãããå¡æºã§ã¯ãªãLorRAã§ããå¡æºãªãã®ã¯ãã®ãã®è©¦ãã¦ã¿ã¦ãã ããã LoRAãå ¬éãã¦ãããµã¤ãã§ãæ¨å¥¨ããã³ãããããªã¬
ã¯ããã«ãã®è¨äºã¯ãåãã¦Stable Diffusionã®LoRAãä½æããæ¹ã«åãã解説ã§ãããããã¥ããã£ãããã¿ã¾ããã ãã®è§£èª¬ã§ã¯SDXLãã¼ã¹ã®Animagine-XL-3.1ã§äºæ¬¡å ã¤ã©ã¹ãã®ãã£ã©ã¯ã¿ã¼ã®LoRAãä½æãã¾ãã 注æãã§ã«WebUIã®ç°å¢æ§ç¯ã¨çæãã§ãã¦ãã¦çæã«æ £ãã¦ããåæã®ã¬ã¤ãã¨ãªãã¾ãã Windowsåãã®ã¬ã¤ãã§ãã ã¾ããNVIDIAã®GeForce RTXã°ã©ãã£ãã¯ãã¼ã(VRAM 8GB以ä¸)ãæè¼ãããé«æ§è½ãªãã½ã³ã³ãå¿ è¦ã§ãã ããããLoRAã£ã¦ãªãããï¼Low-Rank Adaptationãæ£å¼å称ã§ãã é£ããããã¨ãã¦ã§ã¤ãã¨ãã¼ã¿ã»ããã®å·®åãåºåãããã®ã§ããä½ã©ã³ã¯ã®è¡åã«å解ãã¦ãããã¡ã¤ã³ãã¥ã¼ã³ãããã¨ã§å°ãªãã¡ã¢ãªã§å¦ç¿ã§ããããã«ãããã®ã§ãã ç°¡åã«è¨ãã°ãLoRAã¯ãã£ã©ãè¡£è£ ãã·ãã¥ã¨ã¼ã·ã§ã³ã
ãªã人ã¯çæAIã«å¦ç¿ããããã¨ã«å«æªæãæ±ãã®ãè¨èªåãã¦ã¿ãï½ãªã ãã¡ããèªãã§æ¸ãã¦ã¾ã ä½ãå«ãªã®ããå確èªèªåã®åæ§ã»ã¢ã¤ãã³ãã£ãã£ããããèªåã§ããæ°ãã¤ãã¦ãªãç¡æèã§ãã£ã¦ãããã¨ã¾ã§ããããã¤ã®éã«ãç¥ããªããã¡ã«èª°ãã«ä½¿ç¨ãããããã®ãã¨ã«äººéã¯ææããããã®ææãåæã«ãç¡æèã®è¤è£½ãã¨ã§ãå¼ãã§ãããã ãããçæAIã¨åçã»æ´»çå°å·ã¯åãã§ããã¨è¨ã£ã¦ãã人ãããããåçãæ´»çå°å·ã¯ãã£ãããã®ã¾ã¾è¤è£½ãããã®ã§ãããããããçæAIã¯ãã®ã¾ã¾ã®è¤è£½ã§ã¯ãªããç¡æèã¾ã§ããè¤è£½ããã ãã®æç« ã¨ã¯ãã¼ã³ã®è©±ããã¦ãããã¨ããå¯ããã« èªåã¨åæ§ã®ææç©ãç¡éã«çæãããã®ã¯ææã ã¨è¨ãããã®ã ã¨æã ã¤ã¾ã㯠èªåã代æ¿ãããã¦ãã¾ããã¨ã¸ã®ææã㪠人éã¨AIã®éãå ·ä½çãªéãã®èª¬æã¯ãã®æç« ã ã¨æã èªç¶äººã®å¦ç¿ã¯ãå®æåããåä½è ã«ã¤ãã¦æ§ã ãªèå¯ãããª
ããããããã®ãé¢åã§ãããhako-mikanãããç°¡åã«ã§ããããã«ãã¦ããã¾ããã 精度é«ããã«ã¯ããããã®ç»åããã£ãã»ããå¤åè¯ãã®ã§ãããã 試ãã«ã¯æ¥½ã§ããã§ãã (ç»åæå®ãããªãã¦ãã©ã«ãæå®ã§ããã¿ãããªã®ãå®è£ ãããããããã) TrainTrainæ¡å¼µãã¤ã³ã¹ãã¼ã«ãã¦TrainTrainã¿ããåºç¾ããã¾ã TrainTrainã¤ã³ã¹ãã¼ã«Difference_Use2ndPassãé¸æãã¦èªã¿è¾¼ã¿ã¾ã Difference_Use2ndPass使ãã¢ãã«ãé¸æãã¦ãuse gradient checkpointingã«ãã§ãã¯ãå ¥ãã¾ã ã¢ãã«é¸æå ãå¤åå¾ã®ç»åãä¸çªä¸ã®ã¨ããã«è¿½å ãã¾ã 追å å 追å å¾Start Trainingãæ¼ãã¦å¾ ã¡ã¾ã å®è¡LoRAå®æï¼èæ¯ããªããã£ã©ä¸å身ç»åãã¨ãã¸ç»åã«ããã®ã§ãã£ã©ã ããç½ããªããããªé¢ç½ãæãã«ãªãã¾ããã
TrainTrainã®LoRAä½ãã«ã¤ãã¦ãã¥ã¼ããªã¢ã«ãä½ãããã¨æã£ã¦ããã¨ããã§ãAIã«éãå¶éç¡ã使ç¨å¯è½ãªãã£ã©ã¯ã¿ã¼ããã«ã¿ããããçºè¡¨ããã¾ããã大å¤ç´ æ´ãããé¢ç½ã試ã¿ã§ãããæ©éãã«ã¿ããã¡ãããä¾ã«ãã¦LoRAãä½ã£ã¦ã¿ã¾ãããã ãã«ã¿ããã¡ãã(-189)ããã±ããã«å ¥ãããµãã¤ã®ç©ãèåããããã¨ãã§ããããããå ¥ããç©ã®å¤§ããã«å¶éã¯ããã®ã ãããã人éã®è³ã®ä»ã«ã±ã¢è³ãåãããããè´åã«ã¯èªä¿¡ãããããã ããããã£ã¼ã«ã«ããã¨æå¤ã¨éã使å½ãèè² ã£ã¦ããããã§ãããæä¾ããã¦ããç»åã¯åå¾2æã ããªã®ã§LoRAãä½ããã¨ããã¨æ師ç»åã足ãã¾ããããã®å¯¾å¦æ³ã¯ããã¤ãããã¾ããã¾ã2æã§LoRAãä½ããLoRAã使ã£ã¦ç»åãçæãã¦ããã¾ãçæã§ããç»åã§ããä¸åº¦å¦ç¿ãããã¨ããè¸çæ³ã§ããããã¯852話æ°ã試ãã¦ããããã§ããã»ãã«ãKatsushiro K
LoRAã£ã¦ãªããªã®ã MicrosoftãéçºããAIã®è¿½å å¦ç¿æ¹å¼(Low-Rank Adaptation of Large Language Models)ã®ãã¨ãstable diffusionã¦ã¼ã¶ã¼ã®éã§ã¯è¿½å å¦ç¿ãããã¼ã¿æ¹å¼ã¨ãã¦ç¥ããã¦ããã ãã£ããè¨ã㨠ã¢ãã«ã®ä»ã«è¿½å ã®å¦ç¿ãã¼ã¿ãèªåã§ä½ããç»åçæã«å©ç¨ã§ãã夢ã®ä»çµã¿ã ä¾ãããªãã²ã¼ã ã®DLCã¿ãããªãã®ã(å³å¯ã«ã¯å¾æ¥ã¨ã¯éãå¦ç¿ã·ã¹ãã ã®äºãæãããã¤ã©ã¹ãçæã«ããã¦ç¨èªãåºã¦ããå ´åãLoRAï¼ã¢ãã«ã«å½±é¿ãä¸ãããã¡ã¤ã«ã®äºã ã¨æã£ã¦ãã) ä½ã£ãLoRAã®ãã¡ã¤ã«ã¯æ¯è¼ç軽éãªã®ã§ãé å¸ããããä»ã®äººãé å¸ãã¦ããLoRAãèªåã®ç»åçæã«å©ç¨ãããã¨ãã§ãã¾ãã ä¾ãã°ããã®ã¢ãã«ããããã¬ã¤ãªã¤ã©ã¹ãåºãããã©ããã®ãã¼ãºããã®çµµæã¯åºããªããã ããªâ¦ãã¿ãããªæ©ã¿ã解決ã§ãã¾ãã å°å ¥ã¯S
æ¦è¦ sd-scriptsã¨ã¯ãkohya-ssæ°*1åã³ãã®contributorsãä½æããããã°ã©ã ã®ï¼ã¤ã https://github.com/kohya-ss/sd-scripts LoRAãã¼ã«ã¨ãã¦ã®ç¥å度 LoRAã®å¦ç¿ç¨ãã¼ã«ã¨ãã¦æåã sd-scriptsã®ãªãªã¼ã¹å½æ*2ã«ããã¦ããã以å¤ã®å¦ç¿ç°å¢ã¨ããã°Stable Diffusion web UIã«å®è£ ããããembeddings(Textual Inversion)ãHyperNetworkãããã ã£ãããããããããªãã«çãä¸ãããè¦ããããå¦ç¿ç²¾åº¦ãããä½ãã§ãããå½æDreamBoothã¨å¼ã°ããé«å質ãã¤VRAMæ¶è²»å¤§ã®æ¹å¼ãåå¨ãããããä»ä¸ã¤å¦ç¿ã«å¯¾ããæ·å± ãé«ãç¶æ ã ã£ãã ä¸æ¹ãLoRAã¯ãã®VRAMæ¶è²»éã®å°ãªã*3ã¨å¦ç¿å質ã®é«ãããã¼ã¿å®¹éã®å°ããããã2023/3æé ãã¹ã¬ä½äººéã注
ãKohyaâs GUIãã¨ã¯ï¼Stable Diffusionã§ä½¿ããã¾ãã¾ãªå¦ç¿ãã¼ã¿ã®å¶ä½ããµãã¼ããã¦ããããã¼ã«ã§ãã ãKohya Sãæ°ã®éçºãããsd-scriptsãããã¼ã¹ã«ãbmaltaisãæ°ãGUIã¨ãã¦å ¬éãã¦ãã¾ãã ãsd-scriptsãã¯å ¨ã¦ãã³ãã³ãã©ã¤ã³ä¸ã§æä½ããçºãæ±ãé£æ度ãé«ãã®ã§ããããKohyaâs GUIãã¯è¦è¦çã«ç解ã§ããé¨åãå¤ããloraå¶ä½ã§ã¯ä¸çã§ä¸çªä½¿ç¨ããã¦ãããã¼ã«ã ã¨æãã¾ãã ãã®æ©è½ããã¾ã使ãããªããã¨ãV1.5ãV2ãSDLXã§ä½¿ã DreamBoothãU-Netããã³Text Encoderã®å¦ç¿ããµãã¼ã fine-tuningãåä¸ LoRAã®å¦ç¿ããµãã¼ã ç»åçæ ã¢ãã«å¤æï¼Stable Diffision ckpt/safetensorsã¨Diffusersã®ç¸äºå¤æï¼ ãããã®å¦ç¿ãã¼ã¿ã®ç
æè¿ãã¨ãã«ãæ°ï¼@tori29umaiï¼ã®ä¾é ¼åãã¦ã³ãã¼æ©å¦ç¿æ³ä½¿ã£ã¦ã¨ãã«ãæ°ã®èªåçµµLoRAãä½ã£ããããã®LoRAã®ä½ãæ¹ã¨ããæãã¦ãã®ã§ãã ãã®éã説æç¨ã«PDFä½ã£ã¦æ¸¡ããããèªãã ã¨ãã«ãæ°æ°ãã³ã¬ã¯æ¯éã¨ãä¸éã«å ¬éãã¹ããã®ã§ããã¨ã㨠ããã§ãOKãããå ¬éãã¡ããã¾ãããã£ã¦ãªã£ãã®ã§noteã§PDFå ¬éã¨ããæµãã§ãããã¾ã å 容çã«ã¯ãã³ãã¼æ©å¦ç¿æ³ã§èªåçµµLoRAãä½ãããã®æ¹æ³ã«ã¤ãã¦è²ã ã¨ããã¨ã¯å¦ç¿æã®è¨å®ã«ã¤ãã¦ï¼ã³ãã³ãã¨ãï¼ã®è³ªåãã£ãã®ã§ãã®è¾ºã¡ããã£ã¨ ä¸å¿ããããªã«é£ããå 容ãããªãã¨ã¯æã£ã¦ããã ãã© ããããããªãã£ãããã³ãã¼æ©LoRAå¦ç¿ã«ã¤ãã¦ã°ã°ãããç§ã以åæ¸ãããã®è¾ºã®è¨äºã¨ãèªãã§ã¿ã¦ã
ã©ã³ãã³ã°
ãç¥ãã
ã©ã³ãã³ã°
ãªãªã¼ã¹ãé害æ å ±ãªã©ã®ãµã¼ãã¹ã®ãç¥ãã
ææ°ã®äººæ°ã¨ã³ããªã¼ã®é ä¿¡
å¦çãå®è¡ä¸ã§ã
j次ã®ããã¯ãã¼ã¯
kåã®ããã¯ãã¼ã¯
lãã¨ã§èªã
eã³ã¡ã³ãä¸è¦§ãéã
oãã¼ã¸ãéã
{{#tags}}- {{label}}
{{/tags}}